trees.js 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. 'use strict';
  2. // (C) 1995-2013 Jean-loup Gailly and Mark Adler
  3. // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
  4. //
  5. // This software is provided 'as-is', without any express or implied
  6. // warranty. In no event will the authors be held liable for any damages
  7. // arising from the use of this software.
  8. //
  9. // Permission is granted to anyone to use this software for any purpose,
  10. // including commercial applications, and to alter it and redistribute it
  11. // freely, subject to the following restrictions:
  12. //
  13. // 1. The origin of this software must not be misrepresented; you must not
  14. // claim that you wrote the original software. If you use this software
  15. // in a product, an acknowledgment in the product documentation would be
  16. // appreciated but is not required.
  17. // 2. Altered source versions must be plainly marked as such, and must not be
  18. // misrepresented as being the original software.
  19. // 3. This notice may not be removed or altered from any source distribution.
  20. /* eslint-disable space-unary-ops */
  21. var utils = require('../utils/common');
  22. /* Public constants ==========================================================*/
  23. /* ===========================================================================*/
  24. //var Z_FILTERED = 1;
  25. //var Z_HUFFMAN_ONLY = 2;
  26. //var Z_RLE = 3;
  27. var Z_FIXED = 4;
  28. //var Z_DEFAULT_STRATEGY = 0;
  29. /* Possible values of the data_type field (though see inflate()) */
  30. var Z_BINARY = 0;
  31. var Z_TEXT = 1;
  32. //var Z_ASCII = 1; // = Z_TEXT
  33. var Z_UNKNOWN = 2;
  34. /*============================================================================*/
  35. function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }
  36. // From zutil.h
  37. var STORED_BLOCK = 0;
  38. var STATIC_TREES = 1;
  39. var DYN_TREES = 2;
  40. /* The three kinds of block type */
  41. var MIN_MATCH = 3;
  42. var MAX_MATCH = 258;
  43. /* The minimum and maximum match lengths */
  44. // From deflate.h
  45. /* ===========================================================================
  46. * Internal compression state.
  47. */
  48. var LENGTH_CODES = 29;
  49. /* number of length codes, not counting the special END_BLOCK code */
  50. var LITERALS = 256;
  51. /* number of literal bytes 0..255 */
  52. var L_CODES = LITERALS + 1 + LENGTH_CODES;
  53. /* number of Literal or Length codes, including the END_BLOCK code */
  54. var D_CODES = 30;
  55. /* number of distance codes */
  56. var BL_CODES = 19;
  57. /* number of codes used to transfer the bit lengths */
  58. var HEAP_SIZE = 2 * L_CODES + 1;
  59. /* maximum heap size */
  60. var MAX_BITS = 15;
  61. /* All codes must not exceed MAX_BITS bits */
  62. var Buf_size = 16;
  63. /* size of bit buffer in bi_buf */
  64. /* ===========================================================================
  65. * Constants
  66. */
  67. var MAX_BL_BITS = 7;
  68. /* Bit length codes must not exceed MAX_BL_BITS bits */
  69. var END_BLOCK = 256;
  70. /* end of block literal code */
  71. var REP_3_6 = 16;
  72. /* repeat previous bit length 3-6 times (2 bits of repeat count) */
  73. var REPZ_3_10 = 17;
  74. /* repeat a zero length 3-10 times (3 bits of repeat count) */
  75. var REPZ_11_138 = 18;
  76. /* repeat a zero length 11-138 times (7 bits of repeat count) */
  77. /* eslint-disable comma-spacing,array-bracket-spacing */
  78. var extra_lbits = /* extra bits for each length code */
  79. [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];
  80. var extra_dbits = /* extra bits for each distance code */
  81. [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];
  82. var extra_blbits = /* extra bits for each bit length code */
  83. [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];
  84. var bl_order =
  85. [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];
  86. /* eslint-enable comma-spacing,array-bracket-spacing */
  87. /* The lengths of the bit length codes are sent in order of decreasing
  88. * probability, to avoid transmitting the lengths for unused bit length codes.
  89. */
  90. /* ===========================================================================
  91. * Local data. These are initialized only once.
  92. */
  93. // We pre-fill arrays with 0 to avoid uninitialized gaps
  94. var DIST_CODE_LEN = 512; /* see definition of array dist_code below */
  95. // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
  96. var static_ltree = new Array((L_CODES + 2) * 2);
  97. zero(static_ltree);
  98. /* The static literal tree. Since the bit lengths are imposed, there is no
  99. * need for the L_CODES extra codes used during heap construction. However
  100. * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
  101. * below).
  102. */
  103. var static_dtree = new Array(D_CODES * 2);
  104. zero(static_dtree);
  105. /* The static distance tree. (Actually a trivial tree since all codes use
  106. * 5 bits.)
  107. */
  108. var _dist_code = new Array(DIST_CODE_LEN);
  109. zero(_dist_code);
  110. /* Distance codes. The first 256 values correspond to the distances
  111. * 3 .. 258, the last 256 values correspond to the top 8 bits of
  112. * the 15 bit distances.
  113. */
  114. var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
  115. zero(_length_code);
  116. /* length code for each normalized match length (0 == MIN_MATCH) */
  117. var base_length = new Array(LENGTH_CODES);
  118. zero(base_length);
  119. /* First normalized length for each code (0 = MIN_MATCH) */
  120. var base_dist = new Array(D_CODES);
  121. zero(base_dist);
  122. /* First normalized distance for each code (0 = distance of 1) */
  123. function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {
  124. this.static_tree = static_tree; /* static tree or NULL */
  125. this.extra_bits = extra_bits; /* extra bits for each code or NULL */
  126. this.extra_base = extra_base; /* base index for extra_bits */
  127. this.elems = elems; /* max number of elements in the tree */
  128. this.max_length = max_length; /* max bit length for the codes */
  129. // show if `static_tree` has data or dummy - needed for monomorphic objects
  130. this.has_stree = static_tree && static_tree.length;
  131. }
  132. var static_l_desc;
  133. var static_d_desc;
  134. var static_bl_desc;
  135. function TreeDesc(dyn_tree, stat_desc) {
  136. this.dyn_tree = dyn_tree; /* the dynamic tree */
  137. this.max_code = 0; /* largest code with non zero frequency */
  138. this.stat_desc = stat_desc; /* the corresponding static tree */
  139. }
  140. function d_code(dist) {
  141. return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
  142. }
  143. /* ===========================================================================
  144. * Output a short LSB first on the stream.
  145. * IN assertion: there is enough room in pendingBuf.
  146. */
  147. function put_short(s, w) {
  148. // put_byte(s, (uch)((w) & 0xff));
  149. // put_byte(s, (uch)((ush)(w) >> 8));
  150. s.pending_buf[s.pending++] = (w) & 0xff;
  151. s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
  152. }
  153. /* ===========================================================================
  154. * Send a value on a given number of bits.
  155. * IN assertion: length <= 16 and value fits in length bits.
  156. */
  157. function send_bits(s, value, length) {
  158. if (s.bi_valid > (Buf_size - length)) {
  159. s.bi_buf |= (value << s.bi_valid) & 0xffff;
  160. put_short(s, s.bi_buf);
  161. s.bi_buf = value >> (Buf_size - s.bi_valid);
  162. s.bi_valid += length - Buf_size;
  163. } else {
  164. s.bi_buf |= (value << s.bi_valid) & 0xffff;
  165. s.bi_valid += length;
  166. }
  167. }
  168. function send_code(s, c, tree) {
  169. send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
  170. }
  171. /* ===========================================================================
  172. * Reverse the first len bits of a code, using straightforward code (a faster
  173. * method would use a table)
  174. * IN assertion: 1 <= len <= 15
  175. */
  176. function bi_reverse(code, len) {
  177. var res = 0;
  178. do {
  179. res |= code & 1;
  180. code >>>= 1;
  181. res <<= 1;
  182. } while (--len > 0);
  183. return res >>> 1;
  184. }
  185. /* ===========================================================================
  186. * Flush the bit buffer, keeping at most 7 bits in it.
  187. */
  188. function bi_flush(s) {
  189. if (s.bi_valid === 16) {
  190. put_short(s, s.bi_buf);
  191. s.bi_buf = 0;
  192. s.bi_valid = 0;
  193. } else if (s.bi_valid >= 8) {
  194. s.pending_buf[s.pending++] = s.bi_buf & 0xff;
  195. s.bi_buf >>= 8;
  196. s.bi_valid -= 8;
  197. }
  198. }
  199. /* ===========================================================================
  200. * Compute the optimal bit lengths for a tree and update the total bit length
  201. * for the current block.
  202. * IN assertion: the fields freq and dad are set, heap[heap_max] and
  203. * above are the tree nodes sorted by increasing frequency.
  204. * OUT assertions: the field len is set to the optimal bit length, the
  205. * array bl_count contains the frequencies for each bit length.
  206. * The length opt_len is updated; static_len is also updated if stree is
  207. * not null.
  208. */
  209. function gen_bitlen(s, desc)
  210. // deflate_state *s;
  211. // tree_desc *desc; /* the tree descriptor */
  212. {
  213. var tree = desc.dyn_tree;
  214. var max_code = desc.max_code;
  215. var stree = desc.stat_desc.static_tree;
  216. var has_stree = desc.stat_desc.has_stree;
  217. var extra = desc.stat_desc.extra_bits;
  218. var base = desc.stat_desc.extra_base;
  219. var max_length = desc.stat_desc.max_length;
  220. var h; /* heap index */
  221. var n, m; /* iterate over the tree elements */
  222. var bits; /* bit length */
  223. var xbits; /* extra bits */
  224. var f; /* frequency */
  225. var overflow = 0; /* number of elements with bit length too large */
  226. for (bits = 0; bits <= MAX_BITS; bits++) {
  227. s.bl_count[bits] = 0;
  228. }
  229. /* In a first pass, compute the optimal bit lengths (which may
  230. * overflow in the case of the bit length tree).
  231. */
  232. tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */
  233. for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {
  234. n = s.heap[h];
  235. bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
  236. if (bits > max_length) {
  237. bits = max_length;
  238. overflow++;
  239. }
  240. tree[n * 2 + 1]/*.Len*/ = bits;
  241. /* We overwrite tree[n].Dad which is no longer needed */
  242. if (n > max_code) { continue; } /* not a leaf node */
  243. s.bl_count[bits]++;
  244. xbits = 0;
  245. if (n >= base) {
  246. xbits = extra[n - base];
  247. }
  248. f = tree[n * 2]/*.Freq*/;
  249. s.opt_len += f * (bits + xbits);
  250. if (has_stree) {
  251. s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
  252. }
  253. }
  254. if (overflow === 0) { return; }
  255. // Trace((stderr,"\nbit length overflow\n"));
  256. /* This happens for example on obj2 and pic of the Calgary corpus */
  257. /* Find the first bit length which could increase: */
  258. do {
  259. bits = max_length - 1;
  260. while (s.bl_count[bits] === 0) { bits--; }
  261. s.bl_count[bits]--; /* move one leaf down the tree */
  262. s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
  263. s.bl_count[max_length]--;
  264. /* The brother of the overflow item also moves one step up,
  265. * but this does not affect bl_count[max_length]
  266. */
  267. overflow -= 2;
  268. } while (overflow > 0);
  269. /* Now recompute all bit lengths, scanning in increasing frequency.
  270. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
  271. * lengths instead of fixing only the wrong ones. This idea is taken
  272. * from 'ar' written by Haruhiko Okumura.)
  273. */
  274. for (bits = max_length; bits !== 0; bits--) {
  275. n = s.bl_count[bits];
  276. while (n !== 0) {
  277. m = s.heap[--h];
  278. if (m > max_code) { continue; }
  279. if (tree[m * 2 + 1]/*.Len*/ !== bits) {
  280. // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
  281. s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
  282. tree[m * 2 + 1]/*.Len*/ = bits;
  283. }
  284. n--;
  285. }
  286. }
  287. }
  288. /* ===========================================================================
  289. * Generate the codes for a given tree and bit counts (which need not be
  290. * optimal).
  291. * IN assertion: the array bl_count contains the bit length statistics for
  292. * the given tree and the field len is set for all tree elements.
  293. * OUT assertion: the field code is set for all tree elements of non
  294. * zero code length.
  295. */
  296. function gen_codes(tree, max_code, bl_count)
  297. // ct_data *tree; /* the tree to decorate */
  298. // int max_code; /* largest code with non zero frequency */
  299. // ushf *bl_count; /* number of codes at each bit length */
  300. {
  301. var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
  302. var code = 0; /* running code value */
  303. var bits; /* bit index */
  304. var n; /* code index */
  305. /* The distribution counts are first used to generate the code values
  306. * without bit reversal.
  307. */
  308. for (bits = 1; bits <= MAX_BITS; bits++) {
  309. next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
  310. }
  311. /* Check that the bit counts in bl_count are consistent. The last code
  312. * must be all ones.
  313. */
  314. //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
  315. // "inconsistent bit counts");
  316. //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
  317. for (n = 0; n <= max_code; n++) {
  318. var len = tree[n * 2 + 1]/*.Len*/;
  319. if (len === 0) { continue; }
  320. /* Now reverse the bits */
  321. tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
  322. //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
  323. // n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
  324. }
  325. }
  326. /* ===========================================================================
  327. * Initialize the various 'constant' tables.
  328. */
  329. function tr_static_init() {
  330. var n; /* iterates over tree elements */
  331. var bits; /* bit counter */
  332. var length; /* length value */
  333. var code; /* code value */
  334. var dist; /* distance index */
  335. var bl_count = new Array(MAX_BITS + 1);
  336. /* number of codes at each bit length for an optimal tree */
  337. // do check in _tr_init()
  338. //if (static_init_done) return;
  339. /* For some embedded targets, global variables are not initialized: */
  340. /*#ifdef NO_INIT_GLOBAL_POINTERS
  341. static_l_desc.static_tree = static_ltree;
  342. static_l_desc.extra_bits = extra_lbits;
  343. static_d_desc.static_tree = static_dtree;
  344. static_d_desc.extra_bits = extra_dbits;
  345. static_bl_desc.extra_bits = extra_blbits;
  346. #endif*/
  347. /* Initialize the mapping length (0..255) -> length code (0..28) */
  348. length = 0;
  349. for (code = 0; code < LENGTH_CODES - 1; code++) {
  350. base_length[code] = length;
  351. for (n = 0; n < (1 << extra_lbits[code]); n++) {
  352. _length_code[length++] = code;
  353. }
  354. }
  355. //Assert (length == 256, "tr_static_init: length != 256");
  356. /* Note that the length 255 (match length 258) can be represented
  357. * in two different ways: code 284 + 5 bits or code 285, so we
  358. * overwrite length_code[255] to use the best encoding:
  359. */
  360. _length_code[length - 1] = code;
  361. /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
  362. dist = 0;
  363. for (code = 0; code < 16; code++) {
  364. base_dist[code] = dist;
  365. for (n = 0; n < (1 << extra_dbits[code]); n++) {
  366. _dist_code[dist++] = code;
  367. }
  368. }
  369. //Assert (dist == 256, "tr_static_init: dist != 256");
  370. dist >>= 7; /* from now on, all distances are divided by 128 */
  371. for (; code < D_CODES; code++) {
  372. base_dist[code] = dist << 7;
  373. for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
  374. _dist_code[256 + dist++] = code;
  375. }
  376. }
  377. //Assert (dist == 256, "tr_static_init: 256+dist != 512");
  378. /* Construct the codes of the static literal tree */
  379. for (bits = 0; bits <= MAX_BITS; bits++) {
  380. bl_count[bits] = 0;
  381. }
  382. n = 0;
  383. while (n <= 143) {
  384. static_ltree[n * 2 + 1]/*.Len*/ = 8;
  385. n++;
  386. bl_count[8]++;
  387. }
  388. while (n <= 255) {
  389. static_ltree[n * 2 + 1]/*.Len*/ = 9;
  390. n++;
  391. bl_count[9]++;
  392. }
  393. while (n <= 279) {
  394. static_ltree[n * 2 + 1]/*.Len*/ = 7;
  395. n++;
  396. bl_count[7]++;
  397. }
  398. while (n <= 287) {
  399. static_ltree[n * 2 + 1]/*.Len*/ = 8;
  400. n++;
  401. bl_count[8]++;
  402. }
  403. /* Codes 286 and 287 do not exist, but we must include them in the
  404. * tree construction to get a canonical Huffman tree (longest code
  405. * all ones)
  406. */
  407. gen_codes(static_ltree, L_CODES + 1, bl_count);
  408. /* The static distance tree is trivial: */
  409. for (n = 0; n < D_CODES; n++) {
  410. static_dtree[n * 2 + 1]/*.Len*/ = 5;
  411. static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
  412. }
  413. // Now data ready and we can init static trees
  414. static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
  415. static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);
  416. static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);
  417. //static_init_done = true;
  418. }
  419. /* ===========================================================================
  420. * Initialize a new block.
  421. */
  422. function init_block(s) {
  423. var n; /* iterates over tree elements */
  424. /* Initialize the trees. */
  425. for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
  426. for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
  427. for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
  428. s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
  429. s.opt_len = s.static_len = 0;
  430. s.last_lit = s.matches = 0;
  431. }
  432. /* ===========================================================================
  433. * Flush the bit buffer and align the output on a byte boundary
  434. */
  435. function bi_windup(s)
  436. {
  437. if (s.bi_valid > 8) {
  438. put_short(s, s.bi_buf);
  439. } else if (s.bi_valid > 0) {
  440. //put_byte(s, (Byte)s->bi_buf);
  441. s.pending_buf[s.pending++] = s.bi_buf;
  442. }
  443. s.bi_buf = 0;
  444. s.bi_valid = 0;
  445. }
  446. /* ===========================================================================
  447. * Copy a stored block, storing first the length and its
  448. * one's complement if requested.
  449. */
  450. function copy_block(s, buf, len, header)
  451. //DeflateState *s;
  452. //charf *buf; /* the input data */
  453. //unsigned len; /* its length */
  454. //int header; /* true if block header must be written */
  455. {
  456. bi_windup(s); /* align on byte boundary */
  457. if (header) {
  458. put_short(s, len);
  459. put_short(s, ~len);
  460. }
  461. // while (len--) {
  462. // put_byte(s, *buf++);
  463. // }
  464. utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
  465. s.pending += len;
  466. }
  467. /* ===========================================================================
  468. * Compares to subtrees, using the tree depth as tie breaker when
  469. * the subtrees have equal frequency. This minimizes the worst case length.
  470. */
  471. function smaller(tree, n, m, depth) {
  472. var _n2 = n * 2;
  473. var _m2 = m * 2;
  474. return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
  475. (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
  476. }
  477. /* ===========================================================================
  478. * Restore the heap property by moving down the tree starting at node k,
  479. * exchanging a node with the smallest of its two sons if necessary, stopping
  480. * when the heap property is re-established (each father smaller than its
  481. * two sons).
  482. */
  483. function pqdownheap(s, tree, k)
  484. // deflate_state *s;
  485. // ct_data *tree; /* the tree to restore */
  486. // int k; /* node to move down */
  487. {
  488. var v = s.heap[k];
  489. var j = k << 1; /* left son of k */
  490. while (j <= s.heap_len) {
  491. /* Set j to the smallest of the two sons: */
  492. if (j < s.heap_len &&
  493. smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
  494. j++;
  495. }
  496. /* Exit if v is smaller than both sons */
  497. if (smaller(tree, v, s.heap[j], s.depth)) { break; }
  498. /* Exchange v with the smallest son */
  499. s.heap[k] = s.heap[j];
  500. k = j;
  501. /* And continue down the tree, setting j to the left son of k */
  502. j <<= 1;
  503. }
  504. s.heap[k] = v;
  505. }
  506. // inlined manually
  507. // var SMALLEST = 1;
  508. /* ===========================================================================
  509. * Send the block data compressed using the given Huffman trees
  510. */
  511. function compress_block(s, ltree, dtree)
  512. // deflate_state *s;
  513. // const ct_data *ltree; /* literal tree */
  514. // const ct_data *dtree; /* distance tree */
  515. {
  516. var dist; /* distance of matched string */
  517. var lc; /* match length or unmatched char (if dist == 0) */
  518. var lx = 0; /* running index in l_buf */
  519. var code; /* the code to send */
  520. var extra; /* number of extra bits to send */
  521. if (s.last_lit !== 0) {
  522. do {
  523. dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
  524. lc = s.pending_buf[s.l_buf + lx];
  525. lx++;
  526. if (dist === 0) {
  527. send_code(s, lc, ltree); /* send a literal byte */
  528. //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  529. } else {
  530. /* Here, lc is the match length - MIN_MATCH */
  531. code = _length_code[lc];
  532. send_code(s, code + LITERALS + 1, ltree); /* send the length code */
  533. extra = extra_lbits[code];
  534. if (extra !== 0) {
  535. lc -= base_length[code];
  536. send_bits(s, lc, extra); /* send the extra length bits */
  537. }
  538. dist--; /* dist is now the match distance - 1 */
  539. code = d_code(dist);
  540. //Assert (code < D_CODES, "bad d_code");
  541. send_code(s, code, dtree); /* send the distance code */
  542. extra = extra_dbits[code];
  543. if (extra !== 0) {
  544. dist -= base_dist[code];
  545. send_bits(s, dist, extra); /* send the extra distance bits */
  546. }
  547. } /* literal or match pair ? */
  548. /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  549. //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
  550. // "pendingBuf overflow");
  551. } while (lx < s.last_lit);
  552. }
  553. send_code(s, END_BLOCK, ltree);
  554. }
  555. /* ===========================================================================
  556. * Construct one Huffman tree and assigns the code bit strings and lengths.
  557. * Update the total bit length for the current block.
  558. * IN assertion: the field freq is set for all tree elements.
  559. * OUT assertions: the fields len and code are set to the optimal bit length
  560. * and corresponding code. The length opt_len is updated; static_len is
  561. * also updated if stree is not null. The field max_code is set.
  562. */
  563. function build_tree(s, desc)
  564. // deflate_state *s;
  565. // tree_desc *desc; /* the tree descriptor */
  566. {
  567. var tree = desc.dyn_tree;
  568. var stree = desc.stat_desc.static_tree;
  569. var has_stree = desc.stat_desc.has_stree;
  570. var elems = desc.stat_desc.elems;
  571. var n, m; /* iterate over heap elements */
  572. var max_code = -1; /* largest code with non zero frequency */
  573. var node; /* new node being created */
  574. /* Construct the initial heap, with least frequent element in
  575. * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
  576. * heap[0] is not used.
  577. */
  578. s.heap_len = 0;
  579. s.heap_max = HEAP_SIZE;
  580. for (n = 0; n < elems; n++) {
  581. if (tree[n * 2]/*.Freq*/ !== 0) {
  582. s.heap[++s.heap_len] = max_code = n;
  583. s.depth[n] = 0;
  584. } else {
  585. tree[n * 2 + 1]/*.Len*/ = 0;
  586. }
  587. }
  588. /* The pkzip format requires that at least one distance code exists,
  589. * and that at least one bit should be sent even if there is only one
  590. * possible code. So to avoid special checks later on we force at least
  591. * two codes of non zero frequency.
  592. */
  593. while (s.heap_len < 2) {
  594. node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
  595. tree[node * 2]/*.Freq*/ = 1;
  596. s.depth[node] = 0;
  597. s.opt_len--;
  598. if (has_stree) {
  599. s.static_len -= stree[node * 2 + 1]/*.Len*/;
  600. }
  601. /* node is 0 or 1 so it does not have extra bits */
  602. }
  603. desc.max_code = max_code;
  604. /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
  605. * establish sub-heaps of increasing lengths:
  606. */
  607. for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
  608. /* Construct the Huffman tree by repeatedly combining the least two
  609. * frequent nodes.
  610. */
  611. node = elems; /* next internal node of the tree */
  612. do {
  613. //pqremove(s, tree, n); /* n = node of least frequency */
  614. /*** pqremove ***/
  615. n = s.heap[1/*SMALLEST*/];
  616. s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
  617. pqdownheap(s, tree, 1/*SMALLEST*/);
  618. /***/
  619. m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
  620. s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
  621. s.heap[--s.heap_max] = m;
  622. /* Create a new node father of n and m */
  623. tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
  624. s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
  625. tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
  626. /* and insert the new node in the heap */
  627. s.heap[1/*SMALLEST*/] = node++;
  628. pqdownheap(s, tree, 1/*SMALLEST*/);
  629. } while (s.heap_len >= 2);
  630. s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
  631. /* At this point, the fields freq and dad are set. We can now
  632. * generate the bit lengths.
  633. */
  634. gen_bitlen(s, desc);
  635. /* The field len is now set, we can generate the bit codes */
  636. gen_codes(tree, max_code, s.bl_count);
  637. }
  638. /* ===========================================================================
  639. * Scan a literal or distance tree to determine the frequencies of the codes
  640. * in the bit length tree.
  641. */
  642. function scan_tree(s, tree, max_code)
  643. // deflate_state *s;
  644. // ct_data *tree; /* the tree to be scanned */
  645. // int max_code; /* and its largest code of non zero frequency */
  646. {
  647. var n; /* iterates over all tree elements */
  648. var prevlen = -1; /* last emitted length */
  649. var curlen; /* length of current code */
  650. var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
  651. var count = 0; /* repeat count of the current code */
  652. var max_count = 7; /* max repeat count */
  653. var min_count = 4; /* min repeat count */
  654. if (nextlen === 0) {
  655. max_count = 138;
  656. min_count = 3;
  657. }
  658. tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
  659. for (n = 0; n <= max_code; n++) {
  660. curlen = nextlen;
  661. nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
  662. if (++count < max_count && curlen === nextlen) {
  663. continue;
  664. } else if (count < min_count) {
  665. s.bl_tree[curlen * 2]/*.Freq*/ += count;
  666. } else if (curlen !== 0) {
  667. if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
  668. s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
  669. } else if (count <= 10) {
  670. s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
  671. } else {
  672. s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
  673. }
  674. count = 0;
  675. prevlen = curlen;
  676. if (nextlen === 0) {
  677. max_count = 138;
  678. min_count = 3;
  679. } else if (curlen === nextlen) {
  680. max_count = 6;
  681. min_count = 3;
  682. } else {
  683. max_count = 7;
  684. min_count = 4;
  685. }
  686. }
  687. }
  688. /* ===========================================================================
  689. * Send a literal or distance tree in compressed form, using the codes in
  690. * bl_tree.
  691. */
  692. function send_tree(s, tree, max_code)
  693. // deflate_state *s;
  694. // ct_data *tree; /* the tree to be scanned */
  695. // int max_code; /* and its largest code of non zero frequency */
  696. {
  697. var n; /* iterates over all tree elements */
  698. var prevlen = -1; /* last emitted length */
  699. var curlen; /* length of current code */
  700. var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
  701. var count = 0; /* repeat count of the current code */
  702. var max_count = 7; /* max repeat count */
  703. var min_count = 4; /* min repeat count */
  704. /* tree[max_code+1].Len = -1; */ /* guard already set */
  705. if (nextlen === 0) {
  706. max_count = 138;
  707. min_count = 3;
  708. }
  709. for (n = 0; n <= max_code; n++) {
  710. curlen = nextlen;
  711. nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
  712. if (++count < max_count && curlen === nextlen) {
  713. continue;
  714. } else if (count < min_count) {
  715. do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
  716. } else if (curlen !== 0) {
  717. if (curlen !== prevlen) {
  718. send_code(s, curlen, s.bl_tree);
  719. count--;
  720. }
  721. //Assert(count >= 3 && count <= 6, " 3_6?");
  722. send_code(s, REP_3_6, s.bl_tree);
  723. send_bits(s, count - 3, 2);
  724. } else if (count <= 10) {
  725. send_code(s, REPZ_3_10, s.bl_tree);
  726. send_bits(s, count - 3, 3);
  727. } else {
  728. send_code(s, REPZ_11_138, s.bl_tree);
  729. send_bits(s, count - 11, 7);
  730. }
  731. count = 0;
  732. prevlen = curlen;
  733. if (nextlen === 0) {
  734. max_count = 138;
  735. min_count = 3;
  736. } else if (curlen === nextlen) {
  737. max_count = 6;
  738. min_count = 3;
  739. } else {
  740. max_count = 7;
  741. min_count = 4;
  742. }
  743. }
  744. }
  745. /* ===========================================================================
  746. * Construct the Huffman tree for the bit lengths and return the index in
  747. * bl_order of the last bit length code to send.
  748. */
  749. function build_bl_tree(s) {
  750. var max_blindex; /* index of last bit length code of non zero freq */
  751. /* Determine the bit length frequencies for literal and distance trees */
  752. scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
  753. scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
  754. /* Build the bit length tree: */
  755. build_tree(s, s.bl_desc);
  756. /* opt_len now includes the length of the tree representations, except
  757. * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
  758. */
  759. /* Determine the number of bit length codes to send. The pkzip format
  760. * requires that at least 4 bit length codes be sent. (appnote.txt says
  761. * 3 but the actual value used is 4.)
  762. */
  763. for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
  764. if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
  765. break;
  766. }
  767. }
  768. /* Update opt_len to include the bit length tree and counts */
  769. s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
  770. //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
  771. // s->opt_len, s->static_len));
  772. return max_blindex;
  773. }
  774. /* ===========================================================================
  775. * Send the header for a block using dynamic Huffman trees: the counts, the
  776. * lengths of the bit length codes, the literal tree and the distance tree.
  777. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
  778. */
  779. function send_all_trees(s, lcodes, dcodes, blcodes)
  780. // deflate_state *s;
  781. // int lcodes, dcodes, blcodes; /* number of codes for each tree */
  782. {
  783. var rank; /* index in bl_order */
  784. //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
  785. //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
  786. // "too many codes");
  787. //Tracev((stderr, "\nbl counts: "));
  788. send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
  789. send_bits(s, dcodes - 1, 5);
  790. send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
  791. for (rank = 0; rank < blcodes; rank++) {
  792. //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
  793. send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
  794. }
  795. //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
  796. send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
  797. //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
  798. send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
  799. //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  800. }
  801. /* ===========================================================================
  802. * Check if the data type is TEXT or BINARY, using the following algorithm:
  803. * - TEXT if the two conditions below are satisfied:
  804. * a) There are no non-portable control characters belonging to the
  805. * "black list" (0..6, 14..25, 28..31).
  806. * b) There is at least one printable character belonging to the
  807. * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
  808. * - BINARY otherwise.
  809. * - The following partially-portable control characters form a
  810. * "gray list" that is ignored in this detection algorithm:
  811. * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
  812. * IN assertion: the fields Freq of dyn_ltree are set.
  813. */
  814. function detect_data_type(s) {
  815. /* black_mask is the bit mask of black-listed bytes
  816. * set bits 0..6, 14..25, and 28..31
  817. * 0xf3ffc07f = binary 11110011111111111100000001111111
  818. */
  819. var black_mask = 0xf3ffc07f;
  820. var n;
  821. /* Check for non-textual ("black-listed") bytes. */
  822. for (n = 0; n <= 31; n++, black_mask >>>= 1) {
  823. if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
  824. return Z_BINARY;
  825. }
  826. }
  827. /* Check for textual ("white-listed") bytes. */
  828. if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
  829. s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
  830. return Z_TEXT;
  831. }
  832. for (n = 32; n < LITERALS; n++) {
  833. if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
  834. return Z_TEXT;
  835. }
  836. }
  837. /* There are no "black-listed" or "white-listed" bytes:
  838. * this stream either is empty or has tolerated ("gray-listed") bytes only.
  839. */
  840. return Z_BINARY;
  841. }
  842. var static_init_done = false;
  843. /* ===========================================================================
  844. * Initialize the tree data structures for a new zlib stream.
  845. */
  846. function _tr_init(s)
  847. {
  848. if (!static_init_done) {
  849. tr_static_init();
  850. static_init_done = true;
  851. }
  852. s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);
  853. s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);
  854. s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
  855. s.bi_buf = 0;
  856. s.bi_valid = 0;
  857. /* Initialize the first block of the first file: */
  858. init_block(s);
  859. }
  860. /* ===========================================================================
  861. * Send a stored block
  862. */
  863. function _tr_stored_block(s, buf, stored_len, last)
  864. //DeflateState *s;
  865. //charf *buf; /* input block */
  866. //ulg stored_len; /* length of input block */
  867. //int last; /* one if this is the last block for a file */
  868. {
  869. send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */
  870. copy_block(s, buf, stored_len, true); /* with header */
  871. }
  872. /* ===========================================================================
  873. * Send one empty static block to give enough lookahead for inflate.
  874. * This takes 10 bits, of which 7 may remain in the bit buffer.
  875. */
  876. function _tr_align(s) {
  877. send_bits(s, STATIC_TREES << 1, 3);
  878. send_code(s, END_BLOCK, static_ltree);
  879. bi_flush(s);
  880. }
  881. /* ===========================================================================
  882. * Determine the best encoding for the current block: dynamic trees, static
  883. * trees or store, and output the encoded block to the zip file.
  884. */
  885. function _tr_flush_block(s, buf, stored_len, last)
  886. //DeflateState *s;
  887. //charf *buf; /* input block, or NULL if too old */
  888. //ulg stored_len; /* length of input block */
  889. //int last; /* one if this is the last block for a file */
  890. {
  891. var opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  892. var max_blindex = 0; /* index of last bit length code of non zero freq */
  893. /* Build the Huffman trees unless a stored block is forced */
  894. if (s.level > 0) {
  895. /* Check if the file is binary or text */
  896. if (s.strm.data_type === Z_UNKNOWN) {
  897. s.strm.data_type = detect_data_type(s);
  898. }
  899. /* Construct the literal and distance trees */
  900. build_tree(s, s.l_desc);
  901. // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  902. // s->static_len));
  903. build_tree(s, s.d_desc);
  904. // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  905. // s->static_len));
  906. /* At this point, opt_len and static_len are the total bit lengths of
  907. * the compressed block data, excluding the tree representations.
  908. */
  909. /* Build the bit length tree for the above two trees, and get the index
  910. * in bl_order of the last bit length code to send.
  911. */
  912. max_blindex = build_bl_tree(s);
  913. /* Determine the best encoding. Compute the block lengths in bytes. */
  914. opt_lenb = (s.opt_len + 3 + 7) >>> 3;
  915. static_lenb = (s.static_len + 3 + 7) >>> 3;
  916. // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  917. // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  918. // s->last_lit));
  919. if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
  920. } else {
  921. // Assert(buf != (char*)0, "lost buf");
  922. opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  923. }
  924. if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
  925. /* 4: two words for the lengths */
  926. /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  927. * Otherwise we can't have processed more than WSIZE input bytes since
  928. * the last block flush, because compression would have been
  929. * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  930. * transform a block into a stored block.
  931. */
  932. _tr_stored_block(s, buf, stored_len, last);
  933. } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
  934. send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
  935. compress_block(s, static_ltree, static_dtree);
  936. } else {
  937. send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
  938. send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
  939. compress_block(s, s.dyn_ltree, s.dyn_dtree);
  940. }
  941. // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  942. /* The above check is made mod 2^32, for files larger than 512 MB
  943. * and uLong implemented on 32 bits.
  944. */
  945. init_block(s);
  946. if (last) {
  947. bi_windup(s);
  948. }
  949. // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  950. // s->compressed_len-7*last));
  951. }
  952. /* ===========================================================================
  953. * Save the match info and tally the frequency counts. Return true if
  954. * the current block must be flushed.
  955. */
  956. function _tr_tally(s, dist, lc)
  957. // deflate_state *s;
  958. // unsigned dist; /* distance of matched string */
  959. // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
  960. {
  961. //var out_length, in_length, dcode;
  962. s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;
  963. s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
  964. s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
  965. s.last_lit++;
  966. if (dist === 0) {
  967. /* lc is the unmatched char */
  968. s.dyn_ltree[lc * 2]/*.Freq*/++;
  969. } else {
  970. s.matches++;
  971. /* Here, lc is the match length - MIN_MATCH */
  972. dist--; /* dist = match distance - 1 */
  973. //Assert((ush)dist < (ush)MAX_DIST(s) &&
  974. // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  975. // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
  976. s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
  977. s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
  978. }
  979. // (!) This block is disabled in zlib defaults,
  980. // don't enable it for binary compatibility
  981. //#ifdef TRUNCATE_BLOCK
  982. // /* Try to guess if it is profitable to stop the current block here */
  983. // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
  984. // /* Compute an upper bound for the compressed length */
  985. // out_length = s.last_lit*8;
  986. // in_length = s.strstart - s.block_start;
  987. //
  988. // for (dcode = 0; dcode < D_CODES; dcode++) {
  989. // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
  990. // }
  991. // out_length >>>= 3;
  992. // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  993. // // s->last_lit, in_length, out_length,
  994. // // 100L - out_length*100L/in_length));
  995. // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
  996. // return true;
  997. // }
  998. // }
  999. //#endif
  1000. return (s.last_lit === s.lit_bufsize - 1);
  1001. /* We avoid equality with lit_bufsize because of wraparound at 64K
  1002. * on 16 bit machines and because stored blocks are restricted to
  1003. * 64K-1 bytes.
  1004. */
  1005. }
  1006. exports._tr_init = _tr_init;
  1007. exports._tr_stored_block = _tr_stored_block;
  1008. exports._tr_flush_block = _tr_flush_block;
  1009. exports._tr_tally = _tr_tally;
  1010. exports._tr_align = _tr_align;