123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- package hostpool
- import (
- "log"
- "math/rand"
- "time"
- )
- type epsilonHostPoolResponse struct {
- standardHostPoolResponse
- started time.Time
- ended time.Time
- }
- func (r *epsilonHostPoolResponse) Mark(err error) {
- r.Do(func() {
- r.ended = time.Now()
- doMark(err, r)
- })
- }
- type epsilonGreedyHostPool struct {
- standardHostPool // TODO - would be nifty if we could embed HostPool and Locker interfaces
- epsilon float32 // this is our exploration factor
- decayDuration time.Duration
- EpsilonValueCalculator // embed the epsilonValueCalculator
- timer
- quit chan bool
- }
- // Construct an Epsilon Greedy HostPool
- //
- // Epsilon Greedy is an algorithm that allows HostPool not only to track failure state,
- // but also to learn about "better" options in terms of speed, and to pick from available hosts
- // based on how well they perform. This gives a weighted request rate to better
- // performing hosts, while still distributing requests to all hosts (proportionate to their performance).
- // The interface is the same as the standard HostPool, but be sure to mark the HostResponse immediately
- // after executing the request to the host, as that will stop the implicitly running request timer.
- //
- // A good overview of Epsilon Greedy is here http://stevehanov.ca/blog/index.php?id=132
- //
- // To compute the weighting scores, we perform a weighted average of recent response times, over the course of
- // `decayDuration`. decayDuration may be set to 0 to use the default value of 5 minutes
- // We then use the supplied EpsilonValueCalculator to calculate a score from that weighted average response time.
- func NewEpsilonGreedy(hosts []string, decayDuration time.Duration, calc EpsilonValueCalculator) HostPool {
- if decayDuration <= 0 {
- decayDuration = defaultDecayDuration
- }
- stdHP := New(hosts).(*standardHostPool)
- p := &epsilonGreedyHostPool{
- standardHostPool: *stdHP,
- epsilon: float32(initialEpsilon),
- decayDuration: decayDuration,
- EpsilonValueCalculator: calc,
- timer: &realTimer{},
- quit: make(chan bool),
- }
- // allocate structures
- for _, h := range p.hostList {
- h.epsilonCounts = make([]int64, epsilonBuckets)
- h.epsilonValues = make([]int64, epsilonBuckets)
- }
- go p.epsilonGreedyDecay()
- return p
- }
- func (p *epsilonGreedyHostPool) Close() {
- // No need to do p.quit <- true as close(p.quit) does the trick.
- close(p.quit)
- }
- func (p *epsilonGreedyHostPool) SetEpsilon(newEpsilon float32) {
- p.Lock()
- defer p.Unlock()
- p.epsilon = newEpsilon
- }
- func (p *epsilonGreedyHostPool) epsilonGreedyDecay() {
- durationPerBucket := p.decayDuration / epsilonBuckets
- ticker := time.NewTicker(durationPerBucket)
- for {
- select {
- case <-p.quit:
- ticker.Stop()
- return
- case <-ticker.C:
- p.performEpsilonGreedyDecay()
- }
- }
- }
- func (p *epsilonGreedyHostPool) performEpsilonGreedyDecay() {
- p.Lock()
- for _, h := range p.hostList {
- h.epsilonIndex += 1
- h.epsilonIndex = h.epsilonIndex % epsilonBuckets
- h.epsilonCounts[h.epsilonIndex] = 0
- h.epsilonValues[h.epsilonIndex] = 0
- }
- p.Unlock()
- }
- func (p *epsilonGreedyHostPool) Get() HostPoolResponse {
- p.Lock()
- defer p.Unlock()
- host := p.getEpsilonGreedy()
- started := time.Now()
- return &epsilonHostPoolResponse{
- standardHostPoolResponse: standardHostPoolResponse{host: host, pool: p},
- started: started,
- }
- }
- func (p *epsilonGreedyHostPool) getEpsilonGreedy() string {
- var hostToUse *hostEntry
- // this is our exploration phase
- if rand.Float32() < p.epsilon {
- p.epsilon = p.epsilon * epsilonDecay
- if p.epsilon < minEpsilon {
- p.epsilon = minEpsilon
- }
- return p.getRoundRobin()
- }
- // calculate values for each host in the 0..1 range (but not ormalized)
- var possibleHosts []*hostEntry
- now := time.Now()
- var sumValues float64
- for _, h := range p.hostList {
- if h.canTryHost(now) {
- v := h.getWeightedAverageResponseTime()
- if v > 0 {
- ev := p.CalcValueFromAvgResponseTime(v)
- h.epsilonValue = ev
- sumValues += ev
- possibleHosts = append(possibleHosts, h)
- }
- }
- }
- if len(possibleHosts) != 0 {
- // now normalize to the 0..1 range to get a percentage
- for _, h := range possibleHosts {
- h.epsilonPercentage = h.epsilonValue / sumValues
- }
- // do a weighted random choice among hosts
- ceiling := 0.0
- pickPercentage := rand.Float64()
- for _, h := range possibleHosts {
- ceiling += h.epsilonPercentage
- if pickPercentage <= ceiling {
- hostToUse = h
- break
- }
- }
- }
- if hostToUse == nil {
- if len(possibleHosts) != 0 {
- log.Println("Failed to randomly choose a host, Dan loses")
- }
- return p.getRoundRobin()
- }
- if hostToUse.dead {
- hostToUse.willRetryHost(p.maxRetryInterval)
- }
- return hostToUse.host
- }
- func (p *epsilonGreedyHostPool) markSuccess(hostR HostPoolResponse) {
- // first do the base markSuccess - a little redundant with host lookup but cleaner than repeating logic
- p.standardHostPool.markSuccess(hostR)
- eHostR, ok := hostR.(*epsilonHostPoolResponse)
- if !ok {
- log.Printf("Incorrect type in eps markSuccess!") // TODO reflection to print out offending type
- return
- }
- host := eHostR.host
- duration := p.between(eHostR.started, eHostR.ended)
- p.Lock()
- defer p.Unlock()
- h, ok := p.hosts[host]
- if !ok {
- log.Fatalf("host %s not in HostPool %v", host, p.Hosts())
- }
- h.epsilonCounts[h.epsilonIndex]++
- h.epsilonValues[h.epsilonIndex] += int64(duration.Seconds() * 1000)
- }
- // --- timer: this just exists for testing
- type timer interface {
- between(time.Time, time.Time) time.Duration
- }
- type realTimer struct{}
- func (rt *realTimer) between(start time.Time, end time.Time) time.Duration {
- return end.Sub(start)
- }
|