/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #include #include #include #include #include #include "utils.h" using num_t = double; template class MyCustomResultSet { public: using DistanceType = _DistanceType; using IndexType = _IndexType; public: const DistanceType radius; std::vector>& m_indices_dists; explicit MyCustomResultSet( DistanceType radius_, std::vector>& indices_dists) : radius(radius_), m_indices_dists(indices_dists) { init(); } void init() { clear(); } void clear() { m_indices_dists.clear(); } size_t size() const { return m_indices_dists.size(); } size_t empty() const { return m_indices_dists.empty(); } bool full() const { return true; } /** * Called during search to add an element matching the criteria. * @return true if the search should be continued, false if the results are * sufficient */ bool addPoint(DistanceType dist, IndexType index) { printf( "addPoint() called: dist=%f index=%u\n", dist, static_cast(index)); if (dist < radius) m_indices_dists.emplace_back(index, dist); return true; } DistanceType worstDist() const { return radius; } }; void kdtree_demo(const size_t N) { PointCloud cloud; // Generate points: generateRandomPointCloud(cloud, N); num_t query_pt[3] = {0.5, 0.5, 0.5}; // construct a kd-tree index: using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Simple_Adaptor>, PointCloud, 3 /* dim */ >; my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */}); { // radius search: const num_t squaredRadius = 1; std::vector> indices_dists; MyCustomResultSet resultSet( squaredRadius, indices_dists); index.findNeighbors(resultSet, query_pt); std::cout << "Found: " << indices_dists.size() << " NN points." << std::endl; } } int main() { // Randomize Seed srand(static_cast(time(nullptr))); kdtree_demo(10000); return 0; }