/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #pragma once #include #include // ===== This example shows how to use nanoflann with these types of containers: // using my_vector_of_vectors_t = std::vector > ; // // The next one requires #include // using my_vector_of_vectors_t = std::vector ; // ============================================================================= /** A simple vector-of-vectors adaptor for nanoflann, without duplicating the * storage. The i'th vector represents a point in the state space. * * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality * for the points in the data set, allowing more compiler optimizations. * \tparam num_t The type of the point coordinates (typ. double or float). * \tparam Distance The distance metric to use: nanoflann::metric_L1, * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. * \tparam IndexType The type for indices in the KD-tree index * (typically, size_t of int) */ template < class VectorOfVectorsType, typename num_t = double, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = size_t> struct KDTreeVectorOfVectorsAdaptor { using self_t = KDTreeVectorOfVectorsAdaptor< VectorOfVectorsType, num_t, DIM, Distance, IndexType>; using metric_t = typename Distance::template traits::distance_t; using index_t = nanoflann::KDTreeSingleIndexAdaptor; /** The kd-tree index for the user to call its methods as usual with any * other FLANN index */ index_t* index = nullptr; /// Constructor: takes a const ref to the vector of vectors object with the /// data points KDTreeVectorOfVectorsAdaptor( const size_t /* dimensionality */, const VectorOfVectorsType& mat, const int leaf_max_size = 10, const unsigned int n_thread_build = 1) : m_data(mat) { assert(mat.size() != 0 && mat[0].size() != 0); const size_t dims = mat[0].size(); if (DIM > 0 && static_cast(dims) != DIM) throw std::runtime_error( "Data set dimensionality does not match the 'DIM' template " "argument"); index = new index_t( static_cast(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams( leaf_max_size, nanoflann::KDTreeSingleIndexAdaptorFlags::None, n_thread_build)); } ~KDTreeVectorOfVectorsAdaptor() { delete index; } const VectorOfVectorsType& m_data; /** Query for the \a num_closest closest points to a given point * (entered as query_point[0:dim-1]). * Note that this is a short-cut method for index->findNeighbors(). * The user can also call index->... methods as desired. */ inline void query( const num_t* query_point, const size_t num_closest, IndexType* out_indices, num_t* out_distances_sq) const { nanoflann::KNNResultSet resultSet(num_closest); resultSet.init(out_indices, out_distances_sq); index->findNeighbors(resultSet, query_point); } /** @name Interface expected by KDTreeSingleIndexAdaptor * @{ */ const self_t& derived() const { return *this; } self_t& derived() { return *this; } // Must return the number of data points inline size_t kdtree_get_point_count() const { return m_data.size(); } // Returns the dim'th component of the idx'th point in the class: inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const { return m_data[idx][dim]; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned // in "bb" so it can be avoided to redo it again. Look at bb.size() to // find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX& /*bb*/) const { return false; } /** @} */ }; // end of KDTreeVectorOfVectorsAdaptor