/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #include #include #include #include // Declare custom container PointCloud: #include "utils.h" void dump_mem_usage(); // And this is the "dataset to kd-tree" adaptor class: template struct PointCloudAdaptor { using coord_t = typename Derived::coord_t; const Derived& obj; //!< A const ref to the data set origin /// The constructor that sets the data set source PointCloudAdaptor(const Derived& obj_) : obj(obj_) {} /// CRTP helper method inline const Derived& derived() const { return obj; } // Must return the number of data points inline size_t kdtree_get_point_count() const { return derived().pts.size(); } // Returns the dim'th component of the idx'th point in the class: // Since this is inlined and the "dim" argument is typically an immediate // value, the // "if/else's" are actually solved at compile time. inline coord_t kdtree_get_pt(const size_t idx, const size_t dim) const { if (dim == 0) return derived().pts[idx].x; else if (dim == 1) return derived().pts[idx].y; else return derived().pts[idx].z; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned // in "bb" so it can be avoided to redo it again. Look at bb.size() to // find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX& /*bb*/) const { return false; } }; // end of PointCloudAdaptor template void kdtree_demo(const size_t N) { PointCloud cloud; // Generate points: generateRandomPointCloud(cloud, N); using PC2KD = PointCloudAdaptor>; const PC2KD pc2kd(cloud); // The adaptor // construct a kd-tree index: using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Simple_Adaptor, PC2KD, 3 /* dim */ >; dump_mem_usage(); auto do_knn_search = [](const my_kd_tree_t& index) { // do a knn search const size_t num_results = 1; size_t ret_index; num_t out_dist_sqr; nanoflann::KNNResultSet resultSet(num_results); num_t query_pt[3] = {0.5, 0.5, 0.5}; resultSet.init(&ret_index, &out_dist_sqr); index.findNeighbors(resultSet, &query_pt[0]); std::cout << "knnSearch(nn=" << num_results << "): \n"; std::cout << "ret_index=" << ret_index << " out_dist_sqr=" << out_dist_sqr << std::endl; }; my_kd_tree_t index1(3 /*dim*/, pc2kd, {10 /* max leaf */}); my_kd_tree_t index2(3 /*dim*/, pc2kd); dump_mem_usage(); do_knn_search(index1); do_knn_search(index2); } int main() { // Randomize Seed srand((unsigned int)time(NULL)); kdtree_demo(1000000); kdtree_demo(1000000); return 0; }