/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #include #include #include template struct PointCloud { struct Point { T x, y, z; }; using coord_t = T; //!< The type of each coordinate std::vector pts; // Must return the number of data points inline size_t kdtree_get_point_count() const { return pts.size(); } // Returns the dim'th component of the idx'th point in the class: // Since this is inlined and the "dim" argument is typically an immediate // value, the // "if/else's" are actually solved at compile time. inline T kdtree_get_pt(const size_t idx, const size_t dim) const { if (dim == 0) return pts[idx].x; else if (dim == 1) return pts[idx].y; else return pts[idx].z; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned // in "bb" so it can be avoided to redo it again. Look at bb.size() to // find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX& /* bb */) const { return false; } }; template void generateRandomPointCloudRanges( PointCloud& pc, const size_t N, const T max_range_x, const T max_range_y, const T max_range_z) { // Generating Random Point Cloud pc.pts.resize(N); for (size_t i = 0; i < N; i++) { pc.pts[i].x = max_range_x * (rand() % 1000) / T(1000); pc.pts[i].y = max_range_y * (rand() % 1000) / T(1000); pc.pts[i].z = max_range_z * (rand() % 1000) / T(1000); } } template void generateRandomPointCloud( PointCloud& pc, const size_t N, const T max_range = 10) { generateRandomPointCloudRanges(pc, N, max_range, max_range, max_range); } // This is an exampleof a custom data set class template struct PointCloud_Quat { struct Point { T w, x, y, z; }; std::vector pts; // Must return the number of data points inline size_t kdtree_get_point_count() const { return pts.size(); } // Returns the dim'th component of the idx'th point in the class: // Since this is inlined and the "dim" argument is typically an immediate // value, the // "if/else's" are actually solved at compile time. inline T kdtree_get_pt(const size_t idx, const size_t dim) const { if (dim == 0) return pts[idx].w; else if (dim == 1) return pts[idx].x; else if (dim == 2) return pts[idx].y; else return pts[idx].z; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned // in "bb" so it can be avoided to redo it again. Look at bb.size() to // find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX& /* bb */) const { return false; } }; template void generateRandomPointCloud_Quat(PointCloud_Quat& point, const size_t N) { // Generating Random Quaternions point.pts.resize(N); T theta, X, Y, Z, sinAng, cosAng, mag; for (size_t i = 0; i < N; i++) { theta = static_cast( nanoflann::pi_const() * (((double)rand()) / RAND_MAX)); // Generate random value in [-1, 1] X = static_cast(2 * (((double)rand()) / RAND_MAX) - 1); Y = static_cast(2 * (((double)rand()) / RAND_MAX) - 1); Z = static_cast(2 * (((double)rand()) / RAND_MAX) - 1); mag = sqrt(X * X + Y * Y + Z * Z); X /= mag; Y /= mag; Z /= mag; cosAng = cos(theta / 2); sinAng = sin(theta / 2); point.pts[i].w = cosAng; point.pts[i].x = X * sinAng; point.pts[i].y = Y * sinAng; point.pts[i].z = Z * sinAng; } } // This is an exampleof a custom data set class template struct PointCloud_Orient { struct Point { T theta; }; std::vector pts; // Must return the number of data points inline size_t kdtree_get_point_count() const { return pts.size(); } // Returns the dim'th component of the idx'th point in the class: // Since this is inlined and the "dim" argument is typically an immediate // value, the // "if/else's" are actually solved at compile time. inline T kdtree_get_pt(const size_t idx, const size_t dim = 0) const { return pts[idx].theta; } // Optional bounding-box computation: return false to default to a standard // bbox computation loop. // Return true if the BBOX was already computed by the class and returned // in "bb" so it can be avoided to redo it again. Look at bb.size() to // find out the expected dimensionality (e.g. 2 or 3 for point clouds) template bool kdtree_get_bbox(BBOX& /* bb */) const { return false; } }; template void generateRandomPointCloud_Orient( PointCloud_Orient& point, const size_t N) { // Generating Random Orientations point.pts.resize(N); for (size_t i = 0; i < N; i++) { point.pts[i].theta = static_cast( (2 * nanoflann::pi_const() * (((double)rand()) / RAND_MAX)) - nanoflann::pi_const()); } } inline void dump_mem_usage() { FILE* f = fopen("/proc/self/statm", "rt"); if (!f) return; char str[300]; size_t n = fread(str, 1, 200, f); str[n] = 0; printf("MEM: %s\n", str); fclose(f); }