123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include <nanoflann.hpp>
- #include "utils.h"
- using namespace std;
- using namespace nanoflann;
- // This example demonstrate how to embed a custom parameter "myParam" into
- // the metric class My_Custom_Metric_Adaptor, whose constructor accepts
- // arbitrary parameters:
- template <
- class T, class DataSource, typename _DistanceType = T,
- typename IndexType = uint32_t>
- struct My_Custom_Metric_Adaptor
- {
- using ElementType = T;
- using DistanceType = _DistanceType;
- const DataSource& data_source;
- double _myParam = 1.0;
- My_Custom_Metric_Adaptor(const DataSource& _data_source, double myParam)
- : data_source(_data_source), _myParam(myParam)
- {
- }
- inline DistanceType evalMetric(
- const T* a, const IndexType b_idx, size_t size) const
- {
- DistanceType result = DistanceType();
- for (size_t i = 0; i < size; ++i)
- {
- const DistanceType diff =
- a[i] - data_source.kdtree_get_pt(b_idx, i);
- result += std::pow(diff, _myParam);
- }
- return result;
- }
- template <typename U, typename V>
- inline DistanceType accum_dist(const U a, const V b, const size_t) const
- {
- return std::pow((a - b), _myParam);
- }
- };
- static void kdtree_custom_metric_demo(const size_t N)
- {
- using num_t = double;
- PointCloud<num_t> cloud;
- // Generate points:
- generateRandomPointCloud(cloud, N);
- num_t query_pt[3] = {0.5, 0.5, 0.5};
- // construct a kd-tree index:
- using my_kd_tree_t = KDTreeSingleIndexAdaptor<
- My_Custom_Metric_Adaptor<num_t, PointCloud<num_t>>, PointCloud<num_t>,
- 3 /* dim */
- >;
- dump_mem_usage();
- // This will be forwarded to the metric class:
- const double myMetricParam = 4.0;
- my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */}, myMetricParam);
- dump_mem_usage();
- {
- // do a knn search
- const size_t num_results = 1;
- size_t ret_index;
- num_t out_dist_sqr;
- nanoflann::KNNResultSet<num_t> resultSet(num_results);
- resultSet.init(&ret_index, &out_dist_sqr);
- index.findNeighbors(resultSet, &query_pt[0]);
- std::cout << "knnSearch(nn=" << num_results << "\n";
- std::cout << "ret_index=" << ret_index
- << " out_dist_sqr=" << out_dist_sqr << endl;
- }
- {
- // Unsorted radius search:
- const num_t radius = 1;
- std::vector<nanoflann::ResultItem<size_t, num_t>> indices_dists;
- RadiusResultSet<num_t, size_t> resultSet(radius, indices_dists);
- index.findNeighbors(resultSet, query_pt);
- // Get worst (furthest) point, without sorting:
- nanoflann::ResultItem<size_t, num_t> worst_pair =
- resultSet.worst_item();
- cout << "Worst pair: idx=" << worst_pair.first
- << " dist=" << worst_pair.second << endl;
- }
- }
- int main()
- {
- // Randomize Seed
- srand(static_cast<unsigned int>(time(nullptr)));
- kdtree_custom_metric_demo(10000);
- return 0;
- }
|