123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #pragma once
- #include <nanoflann.hpp>
- #include <vector>
- // ===== This example shows how to use nanoflann with these types of containers:
- // using my_vector_of_vectors_t = std::vector<std::vector<double> > ;
- //
- // The next one requires #include <Eigen/Dense>
- // using my_vector_of_vectors_t = std::vector<Eigen::VectorXd> ;
- // =============================================================================
- /** A simple vector-of-vectors adaptor for nanoflann, without duplicating the
- * storage. The i'th vector represents a point in the state space.
- *
- * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
- * for the points in the data set, allowing more compiler optimizations.
- * \tparam num_t The type of the point coordinates (typ. double or float).
- * \tparam Distance The distance metric to use: nanoflann::metric_L1,
- * nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
- * \tparam IndexType The type for indices in the KD-tree index
- * (typically, size_t of int)
- */
- template <
- class VectorOfVectorsType, typename num_t = double, int DIM = -1,
- class Distance = nanoflann::metric_L2, typename IndexType = size_t>
- struct KDTreeVectorOfVectorsAdaptor
- {
- using self_t = KDTreeVectorOfVectorsAdaptor<
- VectorOfVectorsType, num_t, DIM, Distance, IndexType>;
- using metric_t =
- typename Distance::template traits<num_t, self_t>::distance_t;
- using index_t =
- nanoflann::KDTreeSingleIndexAdaptor<metric_t, self_t, DIM, IndexType>;
- /** The kd-tree index for the user to call its methods as usual with any
- * other FLANN index */
- index_t* index = nullptr;
- /// Constructor: takes a const ref to the vector of vectors object with the
- /// data points
- KDTreeVectorOfVectorsAdaptor(
- const size_t /* dimensionality */, const VectorOfVectorsType& mat,
- const int leaf_max_size = 10, const unsigned int n_thread_build = 1)
- : m_data(mat)
- {
- assert(mat.size() != 0 && mat[0].size() != 0);
- const size_t dims = mat[0].size();
- if (DIM > 0 && static_cast<int>(dims) != DIM)
- throw std::runtime_error(
- "Data set dimensionality does not match the 'DIM' template "
- "argument");
- index = new index_t(
- static_cast<int>(dims), *this /* adaptor */,
- nanoflann::KDTreeSingleIndexAdaptorParams(
- leaf_max_size, nanoflann::KDTreeSingleIndexAdaptorFlags::None,
- n_thread_build));
- }
- ~KDTreeVectorOfVectorsAdaptor() { delete index; }
- const VectorOfVectorsType& m_data;
- /** Query for the \a num_closest closest points to a given point
- * (entered as query_point[0:dim-1]).
- * Note that this is a short-cut method for index->findNeighbors().
- * The user can also call index->... methods as desired.
- */
- inline void query(
- const num_t* query_point, const size_t num_closest,
- IndexType* out_indices, num_t* out_distances_sq) const
- {
- nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
- resultSet.init(out_indices, out_distances_sq);
- index->findNeighbors(resultSet, query_point);
- }
- /** @name Interface expected by KDTreeSingleIndexAdaptor
- * @{ */
- const self_t& derived() const { return *this; }
- self_t& derived() { return *this; }
- // Must return the number of data points
- inline size_t kdtree_get_point_count() const { return m_data.size(); }
- // Returns the dim'th component of the idx'th point in the class:
- inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const
- {
- return m_data[idx][dim];
- }
- // Optional bounding-box computation: return false to default to a standard
- // bbox computation loop.
- // Return true if the BBOX was already computed by the class and returned
- // in "bb" so it can be avoided to redo it again. Look at bb.size() to
- // find out the expected dimensionality (e.g. 2 or 3 for point clouds)
- template <class BBOX>
- bool kdtree_get_bbox(BBOX& /*bb*/) const
- {
- return false;
- }
- /** @} */
- }; // end of KDTreeVectorOfVectorsAdaptor
|