123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <Eigen/Dense>
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include <nanoflann.hpp>
- constexpr int SAMPLES_DIM = 15;
- template <typename Der>
- void generateRandomPointCloud(
- Eigen::MatrixBase<Der>& mat, const size_t N, const size_t dim,
- const typename Der::Scalar max_range = 10)
- {
- std::cout << "Generating " << N << " random points...";
- mat.resize(N, dim);
- for (size_t i = 0; i < N; i++)
- for (size_t d = 0; d < dim; d++)
- mat(i, d) =
- max_range * (rand() % 1000) / typename Der::Scalar(1000);
- std::cout << "done\n";
- }
- template <typename num_t>
- void kdtree_demo(const size_t nSamples, const size_t dim)
- {
- using matrix_t = Eigen::Matrix<num_t, Eigen::Dynamic, Eigen::Dynamic>;
- matrix_t mat(nSamples, dim);
- const num_t max_range = 20;
- // Generate points:
- generateRandomPointCloud(mat, nSamples, dim, max_range);
- // cout << mat << endl;
- // Query point:
- std::vector<num_t> query_pt(dim);
- for (size_t d = 0; d < dim; d++)
- query_pt[d] = max_range * (rand() % 1000) / num_t(1000);
- // ------------------------------------------------------------
- // construct a kd-tree index:
- // Some of the different possibilities (uncomment just one)
- // ------------------------------------------------------------
- // Dimensionality set at run-time (default: L2)
- #if 1
- using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<matrix_t>;
- #elif 0
- // Dimensionality set at compile-time: Explicit selection of the distance
- // metric: L2
- using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<
- matrix_t, SAMPLES_DIM /*fixed size*/, nanoflann::metric_L2>;
- #elif 0
- // Dimensionality set at compile-time: Explicit selection of the distance
- // metric: L2_simple
- using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<
- matrix_t, SAMPLES_DIM /*fixed size*/, nanoflann::metric_L2_Simple>;
- #elif 0
- // Dimensionality set at compile-time: Explicit selection of the distance
- // metric: L1
- using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<
- matrix_t, SAMPLES_DIM /*fixed size*/, nanoflann::metric_L1>;
- #elif 0
- // Dimensionality set at compile-time: Explicit selection of the distance
- // metric: L2 Row Major matrix layout
- // Eigen::Matrix<num_t, Dynamic, Dynamic> mat(dim, nSamples);
- using my_kd_tree_t = nanoflann::KDTreeEigenMatrixAdaptor<
- matrix_t, SAMPLES_DIM /*fixed size*/, nanoflann::metric_L2, true>;
- #endif
- my_kd_tree_t mat_index(dim, std::cref(mat), 10 /* max leaf */);
- // do a knn search
- const size_t num_results = 3;
- std::vector<size_t> ret_indexes(num_results);
- std::vector<num_t> out_dists_sqr(num_results);
- nanoflann::KNNResultSet<num_t> resultSet(num_results);
- resultSet.init(&ret_indexes[0], &out_dists_sqr[0]);
- mat_index.index_->findNeighbors(resultSet, &query_pt[0]);
- std::cout << "knnSearch(nn=" << num_results << "): \n";
- for (size_t i = 0; i < resultSet.size(); i++)
- std::cout << "ret_index[" << i << "]=" << ret_indexes[i]
- << " out_dist_sqr=" << out_dists_sqr[i] << std::endl;
- }
- int main(int argc, char** argv)
- {
- // Randomize Seed
- // srand(static_cast<unsigned int>(time(nullptr)));
- kdtree_demo<float>(1000 /* samples */, SAMPLES_DIM /* dim */);
- return 0;
- }
|