123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include <nanoflann.hpp>
- // Declare custom container PointCloud<T>:
- #include "utils.h"
- void dump_mem_usage();
- // And this is the "dataset to kd-tree" adaptor class:
- template <typename Derived>
- struct PointCloudAdaptor
- {
- using coord_t = typename Derived::coord_t;
- const Derived& obj; //!< A const ref to the data set origin
- /// The constructor that sets the data set source
- PointCloudAdaptor(const Derived& obj_) : obj(obj_) {}
- /// CRTP helper method
- inline const Derived& derived() const { return obj; }
- // Must return the number of data points
- inline size_t kdtree_get_point_count() const
- {
- return derived().pts.size();
- }
- // Returns the dim'th component of the idx'th point in the class:
- // Since this is inlined and the "dim" argument is typically an immediate
- // value, the
- // "if/else's" are actually solved at compile time.
- inline coord_t kdtree_get_pt(const size_t idx, const size_t dim) const
- {
- if (dim == 0)
- return derived().pts[idx].x;
- else if (dim == 1)
- return derived().pts[idx].y;
- else
- return derived().pts[idx].z;
- }
- // Optional bounding-box computation: return false to default to a standard
- // bbox computation loop.
- // Return true if the BBOX was already computed by the class and returned
- // in "bb" so it can be avoided to redo it again. Look at bb.size() to
- // find out the expected dimensionality (e.g. 2 or 3 for point clouds)
- template <class BBOX>
- bool kdtree_get_bbox(BBOX& /*bb*/) const
- {
- return false;
- }
- }; // end of PointCloudAdaptor
- template <typename num_t>
- void kdtree_demo(const size_t N)
- {
- PointCloud<num_t> cloud;
- // Generate points:
- generateRandomPointCloud(cloud, N);
- using PC2KD = PointCloudAdaptor<PointCloud<num_t>>;
- const PC2KD pc2kd(cloud); // The adaptor
- // construct a kd-tree index:
- using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor<
- nanoflann::L2_Simple_Adaptor<num_t, PC2KD>, PC2KD, 3 /* dim */
- >;
- dump_mem_usage();
- auto do_knn_search = [](const my_kd_tree_t& index) {
- // do a knn search
- const size_t num_results = 1;
- size_t ret_index;
- num_t out_dist_sqr;
- nanoflann::KNNResultSet<num_t> resultSet(num_results);
- num_t query_pt[3] = {0.5, 0.5, 0.5};
- resultSet.init(&ret_index, &out_dist_sqr);
- index.findNeighbors(resultSet, &query_pt[0]);
- std::cout << "knnSearch(nn=" << num_results << "): \n";
- std::cout << "ret_index=" << ret_index
- << " out_dist_sqr=" << out_dist_sqr << std::endl;
- };
- my_kd_tree_t index1(3 /*dim*/, pc2kd, {10 /* max leaf */});
- my_kd_tree_t index2(3 /*dim*/, pc2kd);
- dump_mem_usage();
- do_knn_search(index1);
- do_knn_search(index2);
- }
- int main()
- {
- // Randomize Seed
- srand((unsigned int)time(NULL));
- kdtree_demo<float>(1000000);
- kdtree_demo<double>(1000000);
- return 0;
- }
|