123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include <nanoflann.hpp>
- #include <type_traits>
- #include "utils.h"
- using num_t = double;
- template <typename _DistanceType, typename _IndexType = size_t>
- class MyCustomResultSet
- {
- public:
- using DistanceType = _DistanceType;
- using IndexType = _IndexType;
- public:
- const DistanceType radius;
- std::vector<nanoflann::ResultItem<IndexType, DistanceType>>&
- m_indices_dists;
- explicit MyCustomResultSet(
- DistanceType radius_,
- std::vector<nanoflann::ResultItem<IndexType, DistanceType>>&
- indices_dists)
- : radius(radius_), m_indices_dists(indices_dists)
- {
- init();
- }
- void init() { clear(); }
- void clear() { m_indices_dists.clear(); }
- size_t size() const { return m_indices_dists.size(); }
- size_t empty() const { return m_indices_dists.empty(); }
- bool full() const { return true; }
- /**
- * Called during search to add an element matching the criteria.
- * @return true if the search should be continued, false if the results are
- * sufficient
- */
- bool addPoint(DistanceType dist, IndexType index)
- {
- printf(
- "addPoint() called: dist=%f index=%u\n", dist,
- static_cast<unsigned int>(index));
- if (dist < radius) m_indices_dists.emplace_back(index, dist);
- return true;
- }
- DistanceType worstDist() const { return radius; }
- };
- void kdtree_demo(const size_t N)
- {
- PointCloud<num_t> cloud;
- // Generate points:
- generateRandomPointCloud(cloud, N);
- num_t query_pt[3] = {0.5, 0.5, 0.5};
- // construct a kd-tree index:
- using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor<
- nanoflann::L2_Simple_Adaptor<num_t, PointCloud<num_t>>,
- PointCloud<num_t>, 3 /* dim */
- >;
- my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */});
- {
- // radius search:
- const num_t squaredRadius = 1;
- std::vector<nanoflann::ResultItem<size_t, num_t>> indices_dists;
- MyCustomResultSet<num_t, size_t> resultSet(
- squaredRadius, indices_dists);
- index.findNeighbors(resultSet, query_pt);
- std::cout << "Found: " << indices_dists.size() << " NN points."
- << std::endl;
- }
- }
- int main()
- {
- // Randomize Seed
- srand(static_cast<unsigned int>(time(nullptr)));
- kdtree_demo(10000);
- return 0;
- }
|