123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <cstdlib>
- #include <iostream>
- #include <vector>
- template <typename T>
- struct PointCloud
- {
- struct Point
- {
- T x, y, z;
- };
- using coord_t = T; //!< The type of each coordinate
- std::vector<Point> pts;
- // Must return the number of data points
- inline size_t kdtree_get_point_count() const { return pts.size(); }
- // Returns the dim'th component of the idx'th point in the class:
- // Since this is inlined and the "dim" argument is typically an immediate
- // value, the
- // "if/else's" are actually solved at compile time.
- inline T kdtree_get_pt(const size_t idx, const size_t dim) const
- {
- if (dim == 0)
- return pts[idx].x;
- else if (dim == 1)
- return pts[idx].y;
- else
- return pts[idx].z;
- }
- // Optional bounding-box computation: return false to default to a standard
- // bbox computation loop.
- // Return true if the BBOX was already computed by the class and returned
- // in "bb" so it can be avoided to redo it again. Look at bb.size() to
- // find out the expected dimensionality (e.g. 2 or 3 for point clouds)
- template <class BBOX>
- bool kdtree_get_bbox(BBOX& /* bb */) const
- {
- return false;
- }
- };
- template <typename T>
- void generateRandomPointCloudRanges(
- PointCloud<T>& pc, const size_t N, const T max_range_x, const T max_range_y,
- const T max_range_z)
- {
- // Generating Random Point Cloud
- pc.pts.resize(N);
- for (size_t i = 0; i < N; i++)
- {
- pc.pts[i].x = max_range_x * (rand() % 1000) / T(1000);
- pc.pts[i].y = max_range_y * (rand() % 1000) / T(1000);
- pc.pts[i].z = max_range_z * (rand() % 1000) / T(1000);
- }
- }
- template <typename T>
- void generateRandomPointCloud(
- PointCloud<T>& pc, const size_t N, const T max_range = 10)
- {
- generateRandomPointCloudRanges(pc, N, max_range, max_range, max_range);
- }
- // This is an exampleof a custom data set class
- template <typename T>
- struct PointCloud_Quat
- {
- struct Point
- {
- T w, x, y, z;
- };
- std::vector<Point> pts;
- // Must return the number of data points
- inline size_t kdtree_get_point_count() const { return pts.size(); }
- // Returns the dim'th component of the idx'th point in the class:
- // Since this is inlined and the "dim" argument is typically an immediate
- // value, the
- // "if/else's" are actually solved at compile time.
- inline T kdtree_get_pt(const size_t idx, const size_t dim) const
- {
- if (dim == 0)
- return pts[idx].w;
- else if (dim == 1)
- return pts[idx].x;
- else if (dim == 2)
- return pts[idx].y;
- else
- return pts[idx].z;
- }
- // Optional bounding-box computation: return false to default to a standard
- // bbox computation loop.
- // Return true if the BBOX was already computed by the class and returned
- // in "bb" so it can be avoided to redo it again. Look at bb.size() to
- // find out the expected dimensionality (e.g. 2 or 3 for point clouds)
- template <class BBOX>
- bool kdtree_get_bbox(BBOX& /* bb */) const
- {
- return false;
- }
- };
- template <typename T>
- void generateRandomPointCloud_Quat(PointCloud_Quat<T>& point, const size_t N)
- {
- // Generating Random Quaternions
- point.pts.resize(N);
- T theta, X, Y, Z, sinAng, cosAng, mag;
- for (size_t i = 0; i < N; i++)
- {
- theta = static_cast<T>(
- nanoflann::pi_const<double>() * (((double)rand()) / RAND_MAX));
- // Generate random value in [-1, 1]
- X = static_cast<T>(2 * (((double)rand()) / RAND_MAX) - 1);
- Y = static_cast<T>(2 * (((double)rand()) / RAND_MAX) - 1);
- Z = static_cast<T>(2 * (((double)rand()) / RAND_MAX) - 1);
- mag = sqrt(X * X + Y * Y + Z * Z);
- X /= mag;
- Y /= mag;
- Z /= mag;
- cosAng = cos(theta / 2);
- sinAng = sin(theta / 2);
- point.pts[i].w = cosAng;
- point.pts[i].x = X * sinAng;
- point.pts[i].y = Y * sinAng;
- point.pts[i].z = Z * sinAng;
- }
- }
- // This is an exampleof a custom data set class
- template <typename T>
- struct PointCloud_Orient
- {
- struct Point
- {
- T theta;
- };
- std::vector<Point> pts;
- // Must return the number of data points
- inline size_t kdtree_get_point_count() const { return pts.size(); }
- // Returns the dim'th component of the idx'th point in the class:
- // Since this is inlined and the "dim" argument is typically an immediate
- // value, the
- // "if/else's" are actually solved at compile time.
- inline T kdtree_get_pt(const size_t idx, const size_t dim = 0) const
- {
- return pts[idx].theta;
- }
- // Optional bounding-box computation: return false to default to a standard
- // bbox computation loop.
- // Return true if the BBOX was already computed by the class and returned
- // in "bb" so it can be avoided to redo it again. Look at bb.size() to
- // find out the expected dimensionality (e.g. 2 or 3 for point clouds)
- template <class BBOX>
- bool kdtree_get_bbox(BBOX& /* bb */) const
- {
- return false;
- }
- };
- template <typename T>
- void generateRandomPointCloud_Orient(
- PointCloud_Orient<T>& point, const size_t N)
- {
- // Generating Random Orientations
- point.pts.resize(N);
- for (size_t i = 0; i < N; i++)
- {
- point.pts[i].theta = static_cast<T>(
- (2 * nanoflann::pi_const<double>() *
- (((double)rand()) / RAND_MAX)) -
- nanoflann::pi_const<double>());
- }
- }
- inline void dump_mem_usage()
- {
- FILE* f = fopen("/proc/self/statm", "rt");
- if (!f) return;
- char str[300];
- size_t n = fread(str, 1, 200, f);
- str[n] = 0;
- printf("MEM: %s\n", str);
- fclose(f);
- }
|