123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <nanoflann.hpp>
- using namespace nanoflann;
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include "KDTreeVectorOfVectorsAdaptor.h"
- const int SAMPLES_DIM = 15;
- typedef std::vector<std::vector<double>> my_vector_of_vectors_t;
- void generateRandomPointCloud(
- my_vector_of_vectors_t& samples, const size_t N, const size_t dim,
- const double max_range = 10.0)
- {
- std::cout << "Generating " << N << " random points...";
- samples.resize(N);
- for (size_t i = 0; i < N; i++)
- {
- samples[i].resize(dim);
- for (size_t d = 0; d < dim; d++)
- samples[i][d] = max_range * (rand() % 1000) / (1000.0);
- }
- std::cout << "done\n";
- }
- void kdtree_demo(const size_t nSamples, const size_t dim)
- {
- my_vector_of_vectors_t samples;
- const double max_range = 20;
- // Generate points:
- generateRandomPointCloud(samples, nSamples, dim, max_range);
- // Query point:
- std::vector<double> query_pt(dim);
- for (size_t d = 0; d < dim; d++)
- query_pt[d] = max_range * (rand() % 1000) / (1000.0);
- // construct a kd-tree index:
- // Dimensionality set at run-time (default: L2)
- // ------------------------------------------------------------
- typedef KDTreeVectorOfVectorsAdaptor<my_vector_of_vectors_t, double>
- my_kd_tree_t;
- my_kd_tree_t mat_index(dim /*dim*/, samples, 10 /* max leaf */);
- // do a knn search
- const size_t num_results = 3;
- std::vector<size_t> ret_indexes(num_results);
- std::vector<double> out_dists_sqr(num_results);
- nanoflann::KNNResultSet<double> resultSet(num_results);
- resultSet.init(&ret_indexes[0], &out_dists_sqr[0]);
- mat_index.index->findNeighbors(resultSet, &query_pt[0]);
- std::cout << "knnSearch(nn=" << num_results << "): \n";
- for (size_t i = 0; i < resultSet.size(); i++)
- std::cout << "ret_index[" << i << "]=" << ret_indexes[i]
- << " out_dist_sqr=" << out_dists_sqr[i] << std::endl;
- }
- int main()
- {
- // Randomize Seed
- srand(static_cast<unsigned int>(time(nullptr)));
- kdtree_demo(1000 /* samples */, SAMPLES_DIM /* dim */);
- }
|