123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2011-2024 Jose Luis Blanco (joseluisblancoc@gmail.com).
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #include <cstdlib>
- #include <ctime>
- #include <iostream>
- #include <chrono>
- #include <nanoflann.hpp>
- #include "utils.h"
- using namespace std;
- const long long pointNum = 10000000; //节点数;
- const int knn = 100; //k近邻;
- long long queryNum = 10000;
- double maxRange = 1000;
- template <typename num_t>
- void kdtree_demo(const size_t N)
- {
- using std::cout;
- using std::endl;
- PointCloud<num_t> cloud;
-
- // Generate points:
- generateRandomPointCloud<double>(cloud, N, maxRange);
-
- // construct a kd-tree index:
- using my_kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor<
- nanoflann::L2_Simple_Adaptor<num_t, PointCloud<num_t>>,
- PointCloud<num_t>, 3 /* dim */
- >;
- auto insertStart = std::chrono::high_resolution_clock::now();
- my_kd_tree_t index(3 /*dim*/, cloud, {10 /* max leaf */});
- auto insertEnd = std::chrono::high_resolution_clock::now();
- std::chrono::duration<double> duration = insertEnd - insertStart;
- double insertTime = duration.count();
- cout<< "插入数据花费的时间为"<< insertTime << "秒"<<"("<<pointNum<<")"<<endl;
- #if 0
- // Test resize of dataset and rebuild of index:
- cloud.pts.resize(cloud.pts.size()*0.5);
- index.buildIndex();
- #endif
- //const num_t query_pt[3] = {0.5, 0.5, 0.5};
-
- // ----------------------------------------------------------------
- // knnSearch(): Perform a search for the N closest points
- // ----------------------------------------------------------------
- {
- auto queryStart = std::chrono::high_resolution_clock::now();
- size_t num_results = knn;
- std::vector<uint32_t> ret_index(num_results);
- std::vector<num_t> out_dist_sqr(num_results);
- for (size_t i = 0; i < queryNum; i++)
- {
- num_t query_pt[3] ;
- query_pt[0] = maxRange * (rand() % 1000) / 1000;
- query_pt[1] = maxRange * (rand() % 1000) / 1000;
- query_pt[2] = maxRange * (rand() % 1000) / 1000;
- num_results = index.knnSearch(
- &query_pt[0], num_results, &ret_index[0], &out_dist_sqr[0]);
- ret_index.resize(num_results);
- out_dist_sqr.resize(num_results);
- }
- auto queryEnd = std::chrono::high_resolution_clock::now();
- std::chrono::duration<double> duration2 = queryEnd - queryStart;
- double queryTime = duration2.count();
- cout<< "查询数据花费的时间为"<< queryTime << "秒"<<"("<<queryNum<<")"<<endl;
- // In case of less points in the tree than requested:
-
- /*
- cout << "knnSearch(): num_results=" << num_results << "\n";
- for (size_t i = 0; i < num_results; i++)
- cout << "idx[" << i << "]=" << ret_index[i] << " dist[" << i
- << "]=" << out_dist_sqr[i] << endl;
- cout << "\n";
- */
- }
- /*
- // ----------------------------------------------------------------
- // radiusSearch(): Perform a search for the points within search_radius
- // ----------------------------------------------------------------
- {
- const num_t search_radius = static_cast<num_t>(0.1);
- std::vector<nanoflann::ResultItem<uint32_t, num_t>> ret_matches;
- // nanoflanSearchParamsameters params;
- // params.sorted = false;
- const size_t nMatches =
- index.radiusSearch(&query_pt[0], search_radius, ret_matches);
- cout << "radiusSearch(): radius=" << search_radius << " -> " << nMatches
- << " matches\n";
- for (size_t i = 0; i < nMatches; i++)
- cout << "idx[" << i << "]=" << ret_matches[i].first << " dist[" << i
- << "]=" << ret_matches[i].second << endl;
- cout << "\n";
- }
- */
- }
- int main()
- {
- // Randomize Seed
- cout<<"knn="<<knn<<endl;
- cout<<"pointNum="<<pointNum<<endl;
- srand(static_cast<unsigned int>(time(nullptr)));
- //kdtree_demo<float>(4);
- kdtree_demo<double>(pointNum);
- return 0;
- }
|