from .functions import defun, defun_wrapped def _hermite_param(ctx, n, z, parabolic_cylinder): """ Combined calculation of the Hermite polynomial H_n(z) (and its generalization to complex n) and the parabolic cylinder function D. """ n, ntyp = ctx._convert_param(n) z = ctx.convert(z) q = -ctx.mpq_1_2 # For re(z) > 0, 2F0 -- http://functions.wolfram.com/ # HypergeometricFunctions/HermiteHGeneral/06/02/0009/ # Otherwise, there is a reflection formula # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/16/01/01/0006/ # # TODO: # An alternative would be to use # http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/06/02/0006/ # # Also, the 1F1 expansion # http://functions.wolfram.com/HypergeometricFunctions/ # HermiteHGeneral/26/01/02/0001/ # should probably be used for tiny z if not z: T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0 if parabolic_cylinder: T1[1][0] += q*n return T1, can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \ (ctx.re(z) == 0 and ctx.im(z) > 0) expprec = ctx.prec*4 + 20 if parabolic_cylinder: u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True) w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec) else: w = z w2 = ctx.fmul(w, w, prec=expprec) rw2 = ctx.fdiv(1, w2, prec=expprec) nrw2 = ctx.fneg(rw2, exact=True) nw = ctx.fneg(w, exact=True) if can_use_2f0: T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 terms = [T1] else: T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2 terms = [T1,T2] # Multiply by prefactor for D_n if parabolic_cylinder: expu = ctx.exp(u) for i in range(len(terms)): terms[i][1][0] += q*n terms[i][0].append(expu) terms[i][1].append(1) return tuple(terms) @defun def hermite(ctx, n, z, **kwargs): return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs) @defun def pcfd(ctx, n, z, **kwargs): r""" Gives the parabolic cylinder function in Whittaker's notation `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`). It solves the differential equation .. math :: y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0. and can be represented in terms of Hermite polynomials (see :func:`~mpmath.hermite`) as .. math :: D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right). **Plots** .. literalinclude :: /plots/pcfd.py .. image :: /plots/pcfd.png **Examples** >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0) 1.0 0.0 -1.0 0.0 >>> pcfd(4,0); pcfd(-3,0) 3.0 0.6266570686577501256039413 >>> pcfd('1/2', 2+3j) (-5.363331161232920734849056 - 3.858877821790010714163487j) >>> pcfd(2, -10) 1.374906442631438038871515e-9 Verifying the differential equation:: >>> n = mpf(2.5) >>> y = lambda z: pcfd(n,z) >>> z = 1.75 >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z)) 0.0 Rational Taylor series expansion when `n` is an integer:: >>> taylor(lambda z: pcfd(5,z), 0, 7) [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625] """ return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs) @defun def pcfu(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `U(a,z)`, which may be defined for `\Re(z) > 0` in terms of the confluent U-function (see :func:`~mpmath.hyperu`) by .. math :: U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2} U\left(\frac{a}{2}+\frac{1}{4}, \frac{1}{2}, \frac{1}{2}z^2\right) or, for arbitrary `z`, .. math :: e^{-\frac{1}{4}z^2} U(a,z) = U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4}; \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) + U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4}; \tfrac{3}{2}; -\tfrac{1}{2}z^2\right). **Examples** Connection to other functions:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> z = mpf(3) >>> pcfu(0.5,z) 0.03210358129311151450551963 >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2)) 0.03210358129311151450551963 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255 >>> pcfu(0.5,-z) 23.75012332835297233711255 >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) 23.75012332835297233711255 """ n, _ = ctx._convert_param(a) return ctx.pcfd(-n-ctx.mpq_1_2, z) @defun def pcfv(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `V(a,z)`, which can be represented in terms of :func:`~mpmath.pcfu` as .. math :: V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}. **Examples** Wronskian relation between `U` and `V`:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a, z = 2, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> sqrt(2/pi) 0.7978845608028653558798921 >>> a, z = 2.5, 3 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 0.25, -1 >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) 0.7978845608028653558798921 >>> a, z = 2+1j, 2+3j >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)) 0.7978845608028653558798921 """ n, ntype = ctx._convert_param(a) z = ctx.convert(z) q = ctx.mpq_1_2 r = ctx.mpq_1_4 if ntype == 'Q' and ctx.isint(n*2): # Faster for half-integers def h(): jz = ctx.fmul(z, -1j, exact=True) T1terms = _hermite_param(ctx, -n-q, z, 1) T2terms = _hermite_param(ctx, n-q, jz, 1) for T in T1terms: T[0].append(1j) T[1].append(1) T[3].append(q-n) u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi) for T in T2terms: T[0].append(u) T[1].append(1) return T1terms + T2terms v = ctx.hypercomb(h, [], **kwargs) if ctx._is_real_type(n) and ctx._is_real_type(z): v = ctx._re(v) return v else: def h(n): w = ctx.square_exp_arg(z, -0.25) u = ctx.square_exp_arg(z, 0.5) e = ctx.exp(w) l = [ctx.pi, q, ctx.exp(w)] Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u c, s = ctx.cospi_sinpi(r+q*n) Y1[0].append(s) Y2[0].append(c) for Y in (Y1, Y2): Y[1].append(1) Y[3].append(q-n) return Y1, Y2 return ctx.hypercomb(h, [n], **kwargs) @defun def pcfw(ctx, a, z, **kwargs): r""" Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14). **Examples** Value at the origin:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> a = mpf(0.25) >>> pcfw(a,0) 0.9722833245718180765617104 >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a))) 0.9722833245718180765617104 >>> diff(pcfw,(a,0),(0,1)) -0.5142533944210078966003624 >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a))) -0.5142533944210078966003624 """ n, _ = ctx._convert_param(a) z = ctx.convert(z) def terms(): phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n)) phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j rho = ctx.pi/8 + 0.5*phi2 # XXX: cancellation computing k k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n) C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n) yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25)) yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25)) v = ctx.sum_accurately(terms) if ctx._is_real_type(n) and ctx._is_real_type(z): v = ctx._re(v) return v """ Even/odd PCFs. Useful? @defun def pcfy1(ctx, a, z, **kwargs): a, _ = ctx._convert_param(n) z = ctx.convert(z) def h(): w = ctx.square_exp_arg(z) w1 = ctx.fmul(w, -0.25, exact=True) w2 = ctx.fmul(w, 0.5, exact=True) e = ctx.exp(w1) return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2 return ctx.hypercomb(h, [], **kwargs) @defun def pcfy2(ctx, a, z, **kwargs): a, _ = ctx._convert_param(n) z = ctx.convert(z) def h(): w = ctx.square_exp_arg(z) w1 = ctx.fmul(w, -0.25, exact=True) w2 = ctx.fmul(w, 0.5, exact=True) e = ctx.exp(w1) return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \ [ctx.mpq_3_2], w2 return ctx.hypercomb(h, [], **kwargs) """ @defun_wrapped def gegenbauer(ctx, n, a, z, **kwargs): # Special cases: a+0.5, a*2 poles if ctx.isnpint(a): return 0*(z+n) if ctx.isnpint(a+0.5): # TODO: something else is required here # E.g.: gegenbauer(-2, -0.5, 3) == -12 if ctx.isnpint(n+1): raise NotImplementedError("Gegenbauer function with two limits") def h(a): a2 = 2*a T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) return [T] return ctx.hypercomb(h, [a], **kwargs) def h(n): a2 = 2*a T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) return [T] return ctx.hypercomb(h, [n], **kwargs) @defun_wrapped def jacobi(ctx, n, a, b, x, **kwargs): if not ctx.isnpint(a): def h(n): return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),) return ctx.hypercomb(h, [n], **kwargs) if not ctx.isint(b): def h(n, a): return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),) return ctx.hypercomb(h, [n, a], **kwargs) # XXX: determine appropriate limit return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs) @defun_wrapped def laguerre(ctx, n, a, z, **kwargs): # XXX: limits, poles #if ctx.isnpint(n): # return 0*(a+z) def h(a): return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),) return ctx.hypercomb(h, [a], **kwargs) @defun_wrapped def legendre(ctx, n, x, **kwargs): if ctx.isint(n): n = int(n) # Accuracy near zeros if (n + (n < 0)) & 1: if not x: return x mag = ctx.mag(x) if mag < -2*ctx.prec-10: return x if mag < -5: ctx.prec += -mag return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs) @defun def legenp(ctx, n, m, z, type=2, **kwargs): # Legendre function, 1st kind n = ctx.convert(n) m = ctx.convert(m) # Faster if not m: return ctx.legendre(n, z, **kwargs) # TODO: correct evaluation at singularities if type == 2: def h(n,m): g = m*0.5 T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) return (T,) return ctx.hypercomb(h, [n,m], **kwargs) if type == 3: def h(n,m): g = m*0.5 T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) return (T,) return ctx.hypercomb(h, [n,m], **kwargs) raise ValueError("requires type=2 or type=3") @defun def legenq(ctx, n, m, z, type=2, **kwargs): # Legendre function, 2nd kind n = ctx.convert(n) m = ctx.convert(m) z = ctx.convert(z) if z in (1, -1): #if ctx.isint(m): # return ctx.nan #return ctx.inf # unsigned return ctx.nan if type == 2: def h(n, m): cos, sin = ctx.cospi_sinpi(m) s = 2 * sin / ctx.pi c = cos a = 1+z b = 1-z u = m/2 w = (1-z)/2 T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ [-n, n+1], [1-m], w T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \ [-n, n+1], [m+1], w return T1, T2 return ctx.hypercomb(h, [n, m], **kwargs) if type == 3: # The following is faster when there only is a single series # Note: not valid for -1 < z < 0 (?) if abs(z) > 1: def h(n, m): T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \ [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \ [n+m+1], [n+1.5], \ [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2) return [T1] return ctx.hypercomb(h, [n, m], **kwargs) else: # not valid for 1 < z < inf ? def h(n, m): s = 2 * ctx.sinpi(m) / ctx.pi c = ctx.expjpi(m) a = 1+z b = z-1 u = m/2 w = (1-z)/2 T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ [-n, n+1], [1-m], w T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \ [-n, n+1], [m+1], w return T1, T2 return ctx.hypercomb(h, [n, m], **kwargs) raise ValueError("requires type=2 or type=3") @defun_wrapped def chebyt(ctx, n, x, **kwargs): if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: return x * 0 return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs) @defun_wrapped def chebyu(ctx, n, x, **kwargs): if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: return x * 0 return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs) @defun def spherharm(ctx, l, m, theta, phi, **kwargs): l = ctx.convert(l) m = ctx.convert(m) theta = ctx.convert(theta) phi = ctx.convert(phi) l_isint = ctx.isint(l) l_natural = l_isint and l >= 0 m_isint = ctx.isint(m) if l_isint and l < 0 and m_isint: return ctx.spherharm(-(l+1), m, theta, phi, **kwargs) if theta == 0 and m_isint and m < 0: return ctx.zero * 1j if l_natural and m_isint: if abs(m) > l: return ctx.zero * 1j # http://functions.wolfram.com/Polynomials/ # SphericalHarmonicY/26/01/02/0004/ def h(l,m): absm = abs(m) C = [-1, ctx.expj(m*phi), (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm), ctx.sin(theta)**2, ctx.fac(absm), 2] P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1] return ((C, P, [], [], [absm-l, l+absm+1], [absm+1], ctx.sin(0.5*theta)**2),) else: # http://functions.wolfram.com/HypergeometricFunctions/ # SphericalHarmonicYGeneral/26/01/02/0001/ def h(l,m): if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m): return (([0], [-1], [], [], [], [], 0),) cos, sin = ctx.cos_sin(0.5*theta) C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi, ctx.gamma(l-m+1), ctx.gamma(l+m+1), cos**2, sin**2] P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m] return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),) return ctx.hypercomb(h, [l,m], **kwargs)