import operator import sys from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS new = object.__new__ def create_reduced(p, q, _cache={}): key = p, q if key in _cache: return _cache[key] x, y = p, q while y: x, y = y, x % y if x != 1: p //= x q //= x v = new(mpq) v._mpq_ = p, q # Speedup integers, half-integers and other small fractions if q <= 4 and abs(key[0]) < 100: _cache[key] = v return v class mpq(object): """ Exact rational type, currently only intended for internal use. """ __slots__ = ["_mpq_"] def __new__(cls, p, q=1): if type(p) is tuple: p, q = p elif hasattr(p, '_mpq_'): p, q = p._mpq_ return create_reduced(p, q) def __repr__(s): return "mpq(%s,%s)" % s._mpq_ def __str__(s): return "(%s/%s)" % s._mpq_ def __int__(s): a, b = s._mpq_ return a // b def __nonzero__(s): return bool(s._mpq_[0]) __bool__ = __nonzero__ def __hash__(s): a, b = s._mpq_ if sys.version_info >= (3, 2): inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS) if not inverse: h = sys.hash_info.inf else: h = (abs(a) * inverse) % HASH_MODULUS if a < 0: h = -h if h == -1: h = -2 return h else: if b == 1: return hash(a) # Power of two: mpf compatible hash if not (b & (b-1)): return mpf_hash(from_man_exp(a, 1-bitcount(b))) return hash((a,b)) def __eq__(s, t): ttype = type(t) if ttype is mpq: return s._mpq_ == t._mpq_ if ttype in int_types: a, b = s._mpq_ if b != 1: return False return a == t return NotImplemented def __ne__(s, t): ttype = type(t) if ttype is mpq: return s._mpq_ != t._mpq_ if ttype in int_types: a, b = s._mpq_ if b != 1: return True return a != t return NotImplemented def _cmp(s, t, op): ttype = type(t) if ttype in int_types: a, b = s._mpq_ return op(a, t*b) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return op(a*d, b*c) return NotImplementedError def __lt__(s, t): return s._cmp(t, operator.lt) def __le__(s, t): return s._cmp(t, operator.le) def __gt__(s, t): return s._cmp(t, operator.gt) def __ge__(s, t): return s._cmp(t, operator.ge) def __abs__(s): a, b = s._mpq_ if a >= 0: return s v = new(mpq) v._mpq_ = -a, b return v def __neg__(s): a, b = s._mpq_ v = new(mpq) v._mpq_ = -a, b return v def __pos__(s): return s def __add__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(a*d+b*c, b*d) if ttype in int_types: a, b = s._mpq_ v = new(mpq) v._mpq_ = a+b*t, b return v return NotImplemented __radd__ = __add__ def __sub__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(a*d-b*c, b*d) if ttype in int_types: a, b = s._mpq_ v = new(mpq) v._mpq_ = a-b*t, b return v return NotImplemented def __rsub__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(b*c-a*d, b*d) if ttype in int_types: a, b = s._mpq_ v = new(mpq) v._mpq_ = b*t-a, b return v return NotImplemented def __mul__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(a*c, b*d) if ttype in int_types: a, b = s._mpq_ return create_reduced(a*t, b) return NotImplemented __rmul__ = __mul__ def __div__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(a*d, b*c) if ttype in int_types: a, b = s._mpq_ return create_reduced(a, b*t) return NotImplemented def __rdiv__(s, t): ttype = type(t) if ttype is mpq: a, b = s._mpq_ c, d = t._mpq_ return create_reduced(b*c, a*d) if ttype in int_types: a, b = s._mpq_ return create_reduced(b*t, a) return NotImplemented def __pow__(s, t): ttype = type(t) if ttype in int_types: a, b = s._mpq_ if t: if t < 0: a, b, t = b, a, -t v = new(mpq) v._mpq_ = a**t, b**t return v raise ZeroDivisionError return NotImplemented mpq_1 = mpq((1,1)) mpq_0 = mpq((0,1)) mpq_1_2 = mpq((1,2)) mpq_3_2 = mpq((3,2)) mpq_1_4 = mpq((1,4)) mpq_1_16 = mpq((1,16)) mpq_3_16 = mpq((3,16)) mpq_5_2 = mpq((5,2)) mpq_3_4 = mpq((3,4)) mpq_7_4 = mpq((7,4)) mpq_5_4 = mpq((5,4)) # Register with "numbers" ABC # We do not subclass, hence we do not use the @abstractmethod checks. While # this is less invasive it may turn out that we do not actually support # parts of the expected interfaces. See # http://docs.python.org/2/library/numbers.html for list of abstract # methods. try: import numbers numbers.Rational.register(mpq) except ImportError: pass