""" The classes used here are for the internal use of assumptions system only and should not be used anywhere else as these do not possess the signatures common to SymPy objects. For general use of logic constructs please refer to sympy.logic classes And, Or, Not, etc. """ from itertools import combinations, product from sympy.core.singleton import S from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor) from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le from sympy.logic.boolalg import Or, And, Not, Xnor from itertools import zip_longest class Literal: """ The smallest element of a CNF object. Parameters ========== lit : Boolean expression is_Not : bool Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import Literal >>> from sympy.abc import x >>> Literal(Q.even(x)) Literal(Q.even(x), False) >>> Literal(~Q.even(x)) Literal(Q.even(x), True) """ def __new__(cls, lit, is_Not=False): if isinstance(lit, Not): lit = lit.args[0] is_Not = True elif isinstance(lit, (AND, OR, Literal)): return ~lit if is_Not else lit obj = super().__new__(cls) obj.lit = lit obj.is_Not = is_Not return obj @property def arg(self): return self.lit def rcall(self, expr): if callable(self.lit): lit = self.lit(expr) else: try: lit = self.lit.apply(expr) except AttributeError: lit = self.lit.rcall(expr) return type(self)(lit, self.is_Not) def __invert__(self): is_Not = not self.is_Not return Literal(self.lit, is_Not) def __str__(self): return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not) __repr__ = __str__ def __eq__(self, other): return self.arg == other.arg and self.is_Not == other.is_Not def __hash__(self): h = hash((type(self).__name__, self.arg, self.is_Not)) return h class OR: """ A low-level implementation for Or """ def __init__(self, *args): self._args = args @property def args(self): return sorted(self._args, key=str) def rcall(self, expr): return type(self)(*[arg.rcall(expr) for arg in self._args ]) def __invert__(self): return AND(*[~arg for arg in self._args]) def __hash__(self): return hash((type(self).__name__,) + tuple(self.args)) def __eq__(self, other): return self.args == other.args def __str__(self): s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')' return s __repr__ = __str__ class AND: """ A low-level implementation for And """ def __init__(self, *args): self._args = args def __invert__(self): return OR(*[~arg for arg in self._args]) @property def args(self): return sorted(self._args, key=str) def rcall(self, expr): return type(self)(*[arg.rcall(expr) for arg in self._args ]) def __hash__(self): return hash((type(self).__name__,) + tuple(self.args)) def __eq__(self, other): return self.args == other.args def __str__(self): s = '('+' & '.join([str(arg) for arg in self.args])+')' return s __repr__ = __str__ def to_NNF(expr, composite_map=None): """ Generates the Negation Normal Form of any boolean expression in terms of AND, OR, and Literal objects. Examples ======== >>> from sympy import Q, Eq >>> from sympy.assumptions.cnf import to_NNF >>> from sympy.abc import x, y >>> expr = Q.even(x) & ~Q.positive(x) >>> to_NNF(expr) (Literal(Q.even(x), False) & Literal(Q.positive(x), True)) Supported boolean objects are converted to corresponding predicates. >>> to_NNF(Eq(x, y)) Literal(Q.eq(x, y), False) If ``composite_map`` argument is given, ``to_NNF`` decomposes the specified predicate into a combination of primitive predicates. >>> cmap = {Q.nonpositive: Q.negative | Q.zero} >>> to_NNF(Q.nonpositive, cmap) (Literal(Q.negative, False) | Literal(Q.zero, False)) >>> to_NNF(Q.nonpositive(x), cmap) (Literal(Q.negative(x), False) | Literal(Q.zero(x), False)) """ from sympy.assumptions.ask import Q from sympy.assumptions.assume import AppliedPredicate, Predicate if composite_map is None: composite_map = dict() binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} if type(expr) in binrelpreds: pred = binrelpreds[type(expr)] expr = pred(*expr.args) if isinstance(expr, Not): arg = expr.args[0] tmp = to_NNF(arg, composite_map) # Strategy: negate the NNF of expr return ~tmp if isinstance(expr, Or): return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)]) if isinstance(expr, And): return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)]) if isinstance(expr, Nand): tmp = AND(*[to_NNF(x, composite_map) for x in expr.args]) return ~tmp if isinstance(expr, Nor): tmp = OR(*[to_NNF(x, composite_map) for x in expr.args]) return ~tmp if isinstance(expr, Xor): cnfs = [] for i in range(0, len(expr.args) + 1, 2): for neg in combinations(expr.args, i): clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map) for s in expr.args] cnfs.append(OR(*clause)) return AND(*cnfs) if isinstance(expr, Xnor): cnfs = [] for i in range(0, len(expr.args) + 1, 2): for neg in combinations(expr.args, i): clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map) for s in expr.args] cnfs.append(OR(*clause)) return ~AND(*cnfs) if isinstance(expr, Implies): L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map) return OR(~L, R) if isinstance(expr, Equivalent): cnfs = [] for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]): a = to_NNF(a, composite_map) b = to_NNF(b, composite_map) cnfs.append(OR(~a, b)) return AND(*cnfs) if isinstance(expr, ITE): L = to_NNF(expr.args[0], composite_map) M = to_NNF(expr.args[1], composite_map) R = to_NNF(expr.args[2], composite_map) return AND(OR(~L, M), OR(L, R)) if isinstance(expr, AppliedPredicate): pred, args = expr.function, expr.arguments newpred = composite_map.get(pred, None) if newpred is not None: return to_NNF(newpred.rcall(*args), composite_map) if isinstance(expr, Predicate): newpred = composite_map.get(expr, None) if newpred is not None: return to_NNF(newpred, composite_map) return Literal(expr) def distribute_AND_over_OR(expr): """ Distributes AND over OR in the NNF expression. Returns the result( Conjunctive Normal Form of expression) as a CNF object. """ if not isinstance(expr, (AND, OR)): tmp = set() tmp.add(frozenset((expr,))) return CNF(tmp) if isinstance(expr, OR): return CNF.all_or(*[distribute_AND_over_OR(arg) for arg in expr._args]) if isinstance(expr, AND): return CNF.all_and(*[distribute_AND_over_OR(arg) for arg in expr._args]) class CNF: """ Class to represent CNF of a Boolean expression. Consists of set of clauses, which themselves are stored as frozenset of Literal objects. Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.abc import x >>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x)) >>> cnf.clauses {frozenset({Literal(Q.zero(x), True)}), frozenset({Literal(Q.negative(x), False), Literal(Q.positive(x), False), Literal(Q.zero(x), False)})} """ def __init__(self, clauses=None): if not clauses: clauses = set() self.clauses = clauses def add(self, prop): clauses = CNF.to_CNF(prop).clauses self.add_clauses(clauses) def __str__(self): s = ' & '.join( ['(' + ' | '.join([str(lit) for lit in clause]) +')' for clause in self.clauses] ) return s def extend(self, props): for p in props: self.add(p) return self def copy(self): return CNF(set(self.clauses)) def add_clauses(self, clauses): self.clauses |= clauses @classmethod def from_prop(cls, prop): res = cls() res.add(prop) return res def __iand__(self, other): self.add_clauses(other.clauses) return self def all_predicates(self): predicates = set() for c in self.clauses: predicates |= {arg.lit for arg in c} return predicates def _or(self, cnf): clauses = set() for a, b in product(self.clauses, cnf.clauses): tmp = set(a) for t in b: tmp.add(t) clauses.add(frozenset(tmp)) return CNF(clauses) def _and(self, cnf): clauses = self.clauses.union(cnf.clauses) return CNF(clauses) def _not(self): clss = list(self.clauses) ll = set() for x in clss[-1]: ll.add(frozenset((~x,))) ll = CNF(ll) for rest in clss[:-1]: p = set() for x in rest: p.add(frozenset((~x,))) ll = ll._or(CNF(p)) return ll def rcall(self, expr): clause_list = list() for clause in self.clauses: lits = [arg.rcall(expr) for arg in clause] clause_list.append(OR(*lits)) expr = AND(*clause_list) return distribute_AND_over_OR(expr) @classmethod def all_or(cls, *cnfs): b = cnfs[0].copy() for rest in cnfs[1:]: b = b._or(rest) return b @classmethod def all_and(cls, *cnfs): b = cnfs[0].copy() for rest in cnfs[1:]: b = b._and(rest) return b @classmethod def to_CNF(cls, expr): from sympy.assumptions.facts import get_composite_predicates expr = to_NNF(expr, get_composite_predicates()) expr = distribute_AND_over_OR(expr) return expr @classmethod def CNF_to_cnf(cls, cnf): """ Converts CNF object to SymPy's boolean expression retaining the form of expression. """ def remove_literal(arg): return Not(arg.lit) if arg.is_Not else arg.lit return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses)) class EncodedCNF: """ Class for encoding the CNF expression. """ def __init__(self, data=None, encoding=None): if not data and not encoding: data = list() encoding = dict() self.data = data self.encoding = encoding self._symbols = list(encoding.keys()) def from_cnf(self, cnf): self._symbols = list(cnf.all_predicates()) n = len(self._symbols) self.encoding = dict(list(zip(self._symbols, list(range(1, n + 1))))) self.data = [self.encode(clause) for clause in cnf.clauses] @property def symbols(self): return self._symbols @property def variables(self): return range(1, len(self._symbols) + 1) def copy(self): new_data = [set(clause) for clause in self.data] return EncodedCNF(new_data, dict(self.encoding)) def add_prop(self, prop): cnf = CNF.from_prop(prop) self.add_from_cnf(cnf) def add_from_cnf(self, cnf): clauses = [self.encode(clause) for clause in cnf.clauses] self.data += clauses def encode_arg(self, arg): literal = arg.lit value = self.encoding.get(literal, None) if value is None: n = len(self._symbols) self._symbols.append(literal) value = self.encoding[literal] = n + 1 if arg.is_Not: return -value else: return value def encode(self, clause): return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}