from sympy.assumptions import Predicate from sympy.multipledispatch import Dispatcher class SquarePredicate(Predicate): """ Square matrix predicate. Explanation =========== ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Square_matrix """ name = 'square' handler = Dispatcher("SquareHandler", doc="Handler for Q.square.") class SymmetricPredicate(Predicate): """ Symmetric matrix predicate. Explanation =========== ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix """ # TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. name = 'symmetric' handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.") class InvertiblePredicate(Predicate): """ Invertible matrix predicate. Explanation =========== ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Invertible_matrix """ name = 'invertible' handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.") class OrthogonalPredicate(Predicate): """ Orthogonal matrix predicate. Explanation =========== ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix """ name = 'orthogonal' handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.") class UnitaryPredicate(Predicate): """ Unitary matrix predicate. Explanation =========== ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_matrix """ name = 'unitary' handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.") class FullRankPredicate(Predicate): """ Fullrank matrix predicate. Explanation =========== ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True """ name = 'fullrank' handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.") class PositiveDefinitePredicate(Predicate): r""" Positive definite matrix predicate. Explanation =========== If $M$ is a :math:`n \times n` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector $Z$ of $n$ real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True References ========== .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix """ name = "positive_definite" handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.") class UpperTriangularPredicate(Predicate): """ Upper triangular matrix predicate. Explanation =========== A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html """ name = "upper_triangular" handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.") class LowerTriangularPredicate(Predicate): """ Lower triangular matrix predicate. Explanation =========== A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0` for :math:`i>j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html """ name = "lower_triangular" handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.") class DiagonalPredicate(Predicate): """ Diagonal matrix predicate. Explanation =========== ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix """ name = "diagonal" handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.") class IntegerElementsPredicate(Predicate): """ Integer elements matrix predicate. Explanation =========== ``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True """ name = "integer_elements" handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.") class RealElementsPredicate(Predicate): """ Real elements matrix predicate. Explanation =========== ``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True """ name = "real_elements" handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.") class ComplexElementsPredicate(Predicate): """ Complex elements matrix predicate. Explanation =========== ``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True """ name = "complex_elements" handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.") class SingularPredicate(Predicate): """ Singular matrix predicate. A matrix is singular iff the value of its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True References ========== .. [1] http://mathworld.wolfram.com/SingularMatrix.html """ name = "singular" handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.") class NormalPredicate(Predicate): """ Normal matrix predicate. A matrix is normal if it commutes with its conjugate transpose. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Normal_matrix """ name = "normal" handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.") class TriangularPredicate(Predicate): """ Triangular matrix predicate. Explanation =========== ``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_matrix """ name = "triangular" handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.") class UnitTriangularPredicate(Predicate): """ Unit triangular matrix predicate. Explanation =========== A unit triangular matrix is a triangular matrix with 1s on the diagonal. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True """ name = "unit_triangular" handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.")