"""Predefined R^n manifolds together with common coord. systems. Coordinate systems are predefined as well as the transformation laws between them. Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`), as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by using the usual `coord_sys.coord_function(index, name)` interface. """ from typing import Any import warnings from sympy.core.symbol import (Dummy, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin) from .diffgeom import Manifold, Patch, CoordSystem __all__ = [ 'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p', 'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s' ] ############################################################################### # R2 ############################################################################### R2 = Manifold('R^2', 2) # type: Any R2_origin = Patch('origin', R2) # type: Any x, y = symbols('x y', real=True) r, theta = symbols('rho theta', nonnegative=True) relations_2d = { ('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))], ('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))], } R2_r = CoordSystem('rectangular', R2_origin, (x, y), relations_2d) # type: Any R2_p = CoordSystem('polar', R2_origin, (r, theta), relations_2d) # type: Any # support deprecated feature with warnings.catch_warnings(): warnings.simplefilter("ignore") x, y, r, theta = symbols('x y r theta', cls=Dummy) R2_r.connect_to(R2_p, [x, y], [sqrt(x**2 + y**2), atan2(y, x)], inverse=False, fill_in_gaps=False) R2_p.connect_to(R2_r, [r, theta], [r*cos(theta), r*sin(theta)], inverse=False, fill_in_gaps=False) # Defining the basis coordinate functions and adding shortcuts for them to the # manifold and the patch. R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions() R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions() # Defining the basis vector fields and adding shortcuts for them to the # manifold and the patch. R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors() R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors() # Defining the basis oneform fields and adding shortcuts for them to the # manifold and the patch. R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms() R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms() ############################################################################### # R3 ############################################################################### R3 = Manifold('R^3', 3) # type: Any R3_origin = Patch('origin', R3) # type: Any x, y, z = symbols('x y z', real=True) rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True) relations_3d = { ('rectangular', 'cylindrical'): [(x, y, z), (sqrt(x**2 + y**2), atan2(y, x), z)], ('cylindrical', 'rectangular'): [(rho, psi, z), (rho*cos(psi), rho*sin(psi), z)], ('rectangular', 'spherical'): [(x, y, z), (sqrt(x**2 + y**2 + z**2), acos(z/sqrt(x**2 + y**2 + z**2)), atan2(y, x))], ('spherical', 'rectangular'): [(r, theta, phi), (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta))], ('cylindrical', 'spherical'): [(rho, psi, z), (sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi)], ('spherical', 'cylindrical'): [(r, theta, phi), (r*sin(theta), phi, r*cos(theta))], } R3_r = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d) # type: Any R3_c = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d) # type: Any R3_s = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d) # type: Any # support deprecated feature with warnings.catch_warnings(): warnings.simplefilter("ignore") x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy) R3_r.connect_to(R3_c, [x, y, z], [sqrt(x**2 + y**2), atan2(y, x), z], inverse=False, fill_in_gaps=False) R3_c.connect_to(R3_r, [rho, psi, z], [rho*cos(psi), rho*sin(psi), z], inverse=False, fill_in_gaps=False) ## rectangular <-> spherical R3_r.connect_to(R3_s, [x, y, z], [sqrt(x**2 + y**2 + z**2), acos(z/ sqrt(x**2 + y**2 + z**2)), atan2(y, x)], inverse=False, fill_in_gaps=False) R3_s.connect_to(R3_r, [r, theta, phi], [r*sin(theta)*cos(phi), r*sin( theta)*sin(phi), r*cos(theta)], inverse=False, fill_in_gaps=False) ## cylindrical <-> spherical R3_c.connect_to(R3_s, [rho, psi, z], [sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi], inverse=False, fill_in_gaps=False) R3_s.connect_to(R3_c, [r, theta, phi], [r*sin(theta), phi, r*cos(theta)], inverse=False, fill_in_gaps=False) # Defining the basis coordinate functions. R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions() R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions() R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions() # Defining the basis vector fields. R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors() R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors() R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors() # Defining the basis oneform fields. R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms() R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms() R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()