""" Recurrences """ from sympy.core import S, sympify from sympy.utilities.iterables import iterable from sympy.utilities.misc import as_int def linrec(coeffs, init, n): r""" Evaluation of univariate linear recurrences of homogeneous type having coefficients independent of the recurrence variable. Parameters ========== coeffs : iterable Coefficients of the recurrence init : iterable Initial values of the recurrence n : Integer Point of evaluation for the recurrence Notes ===== Let `y(n)` be the recurrence of given type, ``c`` be the sequence of coefficients, ``b`` be the sequence of initial/base values of the recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence. Then, .. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\ c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k \end{cases} Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is replaced by the corresponding value `x_i`. The sequence is then a solution of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where `p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic polynomial. Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear combination of powers `x^i`). Now, if `x^n` is congruent to `g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then `T(x^n) = x_n` is equal to `T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`. Computation of `x^n`, given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}` is performed using exponentiation by squaring (refer to [1_]) with an additional reduction step performed to retain only first `k` powers of `x` in the representation of `x^n`. Examples ======== >>> from sympy.discrete.recurrences import linrec >>> from sympy.abc import x, y, z >>> linrec(coeffs=[1, 1], init=[0, 1], n=10) 55 >>> linrec(coeffs=[1, 1], init=[x, y], n=10) 34*x + 55*y >>> linrec(coeffs=[x, y], init=[0, 1], n=5) x**2*y + x*(x**3 + 2*x*y) + y**2 >>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16) 13576*x + 5676*y + 2356*z References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring .. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation§ion=6#Matrices See Also ======== sympy.polys.agca.extensions.ExtensionElement.__pow__ """ if not coeffs: return S.Zero if not iterable(coeffs): raise TypeError("Expected a sequence of coefficients for" " the recurrence") if not iterable(init): raise TypeError("Expected a sequence of values for the initialization" " of the recurrence") n = as_int(n) if n < 0: raise ValueError("Point of evaluation of recurrence must be a " "non-negative integer") c = [sympify(arg) for arg in coeffs] b = [sympify(arg) for arg in init] k = len(c) if len(b) > k: raise TypeError("Count of initial values should not exceed the " "order of the recurrence") else: b += [S.Zero]*(k - len(b)) # remaining initial values default to zero if n < k: return b[n] terms = [u*v for u, v in zip(linrec_coeffs(c, n), b)] return sum(terms[:-1], terms[-1]) def linrec_coeffs(c, n): r""" Compute the coefficients of n'th term in linear recursion sequence defined by c. `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`. It computes the coefficients by using binary exponentiation. This function is used by `linrec` and `_eval_pow_by_cayley`. Parameters ========== c = coefficients of the divisor polynomial n = exponent of x, so dividend is x^n """ k = len(c) def _square_and_reduce(u, offset): # squares `(u_0 + u_1 x + u_2 x^2 + \cdots + u_{k-1} x^k)` (and # multiplies by `x` if offset is 1) and reduces the above result of # length upto `2k` to `k` using the characteristic equation of the # recurrence given by, `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}` w = [S.Zero]*(2*len(u) - 1 + offset) for i, p in enumerate(u): for j, q in enumerate(u): w[offset + i + j] += p*q for j in range(len(w) - 1, k - 1, -1): for i in range(k): w[j - i - 1] += w[j]*c[i] return w[:k] def _final_coeffs(n): # computes the final coefficient list - `cf` corresponding to the # point at which recurrence is to be evalauted - `n`, such that, # `y(n) = cf_0 y(k-1) + cf_1 y(k-2) + \cdots + cf_{k-1} y(0)` if n < k: return [S.Zero]*n + [S.One] + [S.Zero]*(k - n - 1) else: return _square_and_reduce(_final_coeffs(n // 2), n % 2) return _final_coeffs(n)