""" PythonMPQ: Rational number type based on Python integers. This class is intended as a pure Python fallback for when gmpy2 is not installed. If gmpy2 is installed then its mpq type will be used instead. The mpq type is around 20x faster. We could just use the stdlib Fraction class here but that is slower: from fractions import Fraction from sympy.external.pythonmpq import PythonMPQ nums = range(1000) dens = range(5, 1005) rats = [Fraction(n, d) for n, d in zip(nums, dens)] sum(rats) # <--- 24 milliseconds rats = [PythonMPQ(n, d) for n, d in zip(nums, dens)] sum(rats) # <--- 7 milliseconds Both mpq and Fraction have some awkward features like the behaviour of division with // and %: >>> from fractions import Fraction >>> Fraction(2, 3) % Fraction(1, 4) 1/6 For the QQ domain we do not want this behaviour because there should be no remainder when dividing rational numbers. SymPy does not make use of this aspect of mpq when gmpy2 is installed. Since this class is a fallback for that case we do not bother implementing e.g. __mod__ so that we can be sure we are not using it when gmpy2 is installed either. """ import operator from math import gcd from decimal import Decimal from fractions import Fraction import sys from typing import Tuple as tTuple, Type # Used for __hash__ _PyHASH_MODULUS = sys.hash_info.modulus _PyHASH_INF = sys.hash_info.inf class PythonMPQ: """Rational number implementation that is intended to be compatible with gmpy2's mpq. Also slightly faster than fractions.Fraction. PythonMPQ should be treated as immutable although no effort is made to prevent mutation (since that might slow down calculations). """ __slots__ = ('numerator', 'denominator') def __new__(cls, numerator, denominator=None): """Construct PythonMPQ with gcd computation and checks""" if denominator is not None: # # PythonMPQ(n, d): require n and d to be int and d != 0 # if isinstance(numerator, int) and isinstance(denominator, int): # This is the slow part: divisor = gcd(numerator, denominator) numerator //= divisor denominator //= divisor return cls._new_check(numerator, denominator) else: # # PythonMPQ(q) # # Here q can be PythonMPQ, int, Decimal, float, Fraction or str # if isinstance(numerator, int): return cls._new(numerator, 1) elif isinstance(numerator, PythonMPQ): return cls._new(numerator.numerator, numerator.denominator) # Let Fraction handle Decimal/float conversion and str parsing if isinstance(numerator, (Decimal, float, str)): numerator = Fraction(numerator) if isinstance(numerator, Fraction): return cls._new(numerator.numerator, numerator.denominator) # # Reject everything else. This is more strict than mpq which allows # things like mpq(Fraction, Fraction) or mpq(Decimal, any). The mpq # behaviour is somewhat inconsistent so we choose to accept only a # more strict subset of what mpq allows. # raise TypeError("PythonMPQ() requires numeric or string argument") @classmethod def _new_check(cls, numerator, denominator): """Construct PythonMPQ, check divide by zero and canonicalize signs""" if not denominator: raise ZeroDivisionError(f'Zero divisor {numerator}/{denominator}') elif denominator < 0: numerator = -numerator denominator = -denominator return cls._new(numerator, denominator) @classmethod def _new(cls, numerator, denominator): """Construct PythonMPQ efficiently (no checks)""" obj = super().__new__(cls) obj.numerator = numerator obj.denominator = denominator return obj def __int__(self): """Convert to int (truncates towards zero)""" p, q = self.numerator, self.denominator if p < 0: return -(-p//q) return p//q def __float__(self): """Convert to float (approximately)""" return self.numerator / self.denominator def __bool__(self): """True/False if nonzero/zero""" return bool(self.numerator) def __eq__(self, other): """Compare equal with PythonMPQ, int, float, Decimal or Fraction""" if isinstance(other, PythonMPQ): return (self.numerator == other.numerator and self.denominator == other.denominator) elif isinstance(other, self._compatible_types): return self.__eq__(PythonMPQ(other)) else: return NotImplemented # The hashing algorithm for Fraction changed in Python 3.8 if sys.version_info >= (3, 8): # # Hash for Python 3.8 onwards # def __hash__(self): """hash - same as mpq/Fraction""" try: dinv = pow(self.denominator, -1, _PyHASH_MODULUS) except ValueError: hash_ = _PyHASH_INF else: hash_ = hash(hash(abs(self.numerator)) * dinv) result = hash_ if self.numerator >= 0 else -hash_ return -2 if result == -1 else result else: # # Hash for Python < 3.7 # def __hash__(self): """hash - same as mpq/Fraction""" # This is from fractions.py in the stdlib. dinv = pow(self.denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) if not dinv: hash_ = _PyHASH_INF else: hash_ = abs(self.numerator) * dinv % _PyHASH_MODULUS result = hash_ if self >= 0 else -hash_ return -2 if result == -1 else result def __reduce__(self): """Deconstruct for pickling""" return type(self), (self.numerator, self.denominator) def __str__(self): """Convert to string""" if self.denominator != 1: return f"{self.numerator}/{self.denominator}" else: return f"{self.numerator}" def __repr__(self): """Convert to string""" return f"MPQ({self.numerator},{self.denominator})" def _cmp(self, other, op): """Helper for lt/le/gt/ge""" if not isinstance(other, self._compatible_types): return NotImplemented lhs = self.numerator * other.denominator rhs = other.numerator * self.denominator return op(lhs, rhs) def __lt__(self, other): """self < other""" return self._cmp(other, operator.lt) def __le__(self, other): """self <= other""" return self._cmp(other, operator.le) def __gt__(self, other): """self > other""" return self._cmp(other, operator.gt) def __ge__(self, other): """self >= other""" return self._cmp(other, operator.ge) def __abs__(self): """abs(q)""" return self._new(abs(self.numerator), self.denominator) def __pos__(self): """+q""" return self def __neg__(self): """-q""" return self._new(-self.numerator, self.denominator) def __add__(self, other): """q1 + q2""" if isinstance(other, PythonMPQ): # # This is much faster than the naive method used in the stdlib # fractions module. Not sure where this method comes from # though... # # Compare timings for something like: # nums = range(1000) # rats = [PythonMPQ(n, d) for n, d in zip(nums[:-5], nums[5:])] # sum(rats) # <-- time this # ap, aq = self.numerator, self.denominator bp, bq = other.numerator, other.denominator g = gcd(aq, bq) if g == 1: p = ap*bq + aq*bp q = bq*aq else: q1, q2 = aq//g, bq//g p, q = ap*q2 + bp*q1, q1*q2 g2 = gcd(p, g) p, q = (p // g2), q * (g // g2) elif isinstance(other, int): p = self.numerator + self.denominator * other q = self.denominator else: return NotImplemented return self._new(p, q) def __radd__(self, other): """z1 + q2""" if isinstance(other, int): p = self.numerator + self.denominator * other q = self.denominator return self._new(p, q) else: return NotImplemented def __sub__(self ,other): """q1 - q2""" if isinstance(other, PythonMPQ): ap, aq = self.numerator, self.denominator bp, bq = other.numerator, other.denominator g = gcd(aq, bq) if g == 1: p = ap*bq - aq*bp q = bq*aq else: q1, q2 = aq//g, bq//g p, q = ap*q2 - bp*q1, q1*q2 g2 = gcd(p, g) p, q = (p // g2), q * (g // g2) elif isinstance(other, int): p = self.numerator - self.denominator*other q = self.denominator else: return NotImplemented return self._new(p, q) def __rsub__(self, other): """z1 - q2""" if isinstance(other, int): p = self.denominator * other - self.numerator q = self.denominator return self._new(p, q) else: return NotImplemented def __mul__(self, other): """q1 * q2""" if isinstance(other, PythonMPQ): ap, aq = self.numerator, self.denominator bp, bq = other.numerator, other.denominator x1 = gcd(ap, bq) x2 = gcd(bp, aq) p, q = ((ap//x1)*(bp//x2), (aq//x2)*(bq//x1)) elif isinstance(other, int): x = gcd(other, self.denominator) p = self.numerator*(other//x) q = self.denominator//x else: return NotImplemented return self._new(p, q) def __rmul__(self, other): """z1 * q2""" if isinstance(other, int): x = gcd(self.denominator, other) p = self.numerator*(other//x) q = self.denominator//x return self._new(p, q) else: return NotImplemented def __pow__(self, exp): """q ** z""" p, q = self.numerator, self.denominator if exp < 0: p, q, exp = q, p, -exp return self._new_check(p**exp, q**exp) def __truediv__(self, other): """q1 / q2""" if isinstance(other, PythonMPQ): ap, aq = self.numerator, self.denominator bp, bq = other.numerator, other.denominator x1 = gcd(ap, bp) x2 = gcd(bq, aq) p, q = ((ap//x1)*(bq//x2), (aq//x2)*(bp//x1)) elif isinstance(other, int): x = gcd(other, self.numerator) p = self.numerator//x q = self.denominator*(other//x) else: return NotImplemented return self._new_check(p, q) def __rtruediv__(self, other): """z / q""" if isinstance(other, int): x = gcd(self.numerator, other) p = self.denominator*(other//x) q = self.numerator//x return self._new_check(p, q) else: return NotImplemented _compatible_types: tTuple[Type, ...] = () # # These are the types that PythonMPQ will interoperate with for operations # and comparisons such as ==, + etc. We define this down here so that we can # include PythonMPQ in the list as well. # PythonMPQ._compatible_types = (PythonMPQ, int, Decimal, Fraction)