"""Parabolic geometrical entity. Contains * Parabola """ from sympy.core import S from sympy.core.sorting import ordered from sympy.core.symbol import _symbol, symbols from sympy.geometry.entity import GeometryEntity, GeometrySet from sympy.geometry.point import Point, Point2D from sympy.geometry.line import Line, Line2D, Ray2D, Segment2D, LinearEntity3D from sympy.geometry.ellipse import Ellipse from sympy.functions import sign from sympy.simplify import simplify from sympy.solvers.solvers import solve class Parabola(GeometrySet): """A parabolic GeometryEntity. A parabola is declared with a point, that is called 'focus', and a line, that is called 'directrix'. Only vertical or horizontal parabolas are currently supported. Parameters ========== focus : Point Default value is Point(0, 0) directrix : Line Attributes ========== focus directrix axis of symmetry focal length p parameter vertex eccentricity Raises ====== ValueError When `focus` is not a two dimensional point. When `focus` is a point of directrix. NotImplementedError When `directrix` is neither horizontal nor vertical. Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7,8))) >>> p1.focus Point2D(0, 0) >>> p1.directrix Line2D(Point2D(5, 8), Point2D(7, 8)) """ def __new__(cls, focus=None, directrix=None, **kwargs): if focus: focus = Point(focus, dim=2) else: focus = Point(0, 0) directrix = Line(directrix) if (directrix.slope != 0 and directrix.slope != S.Infinity): raise NotImplementedError('The directrix must be a horizontal' ' or vertical line') if directrix.contains(focus): raise ValueError('The focus must not be a point of directrix') return GeometryEntity.__new__(cls, focus, directrix, **kwargs) @property def ambient_dimension(self): """Returns the ambient dimension of parabola. Returns ======= ambient_dimension : integer Examples ======== >>> from sympy import Parabola, Point, Line >>> f1 = Point(0, 0) >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8))) >>> p1.ambient_dimension 2 """ return 2 @property def axis_of_symmetry(self): """The axis of symmetry of the parabola. Returns ======= axis_of_symmetry : Line See Also ======== sympy.geometry.line.Line Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.axis_of_symmetry Line2D(Point2D(0, 0), Point2D(0, 1)) """ return self.directrix.perpendicular_line(self.focus) @property def directrix(self): """The directrix of the parabola. Returns ======= directrix : Line See Also ======== sympy.geometry.line.Line Examples ======== >>> from sympy import Parabola, Point, Line >>> l1 = Line(Point(5, 8), Point(7, 8)) >>> p1 = Parabola(Point(0, 0), l1) >>> p1.directrix Line2D(Point2D(5, 8), Point2D(7, 8)) """ return self.args[1] @property def eccentricity(self): """The eccentricity of the parabola. Returns ======= eccentricity : number A parabola may also be characterized as a conic section with an eccentricity of 1. As a consequence of this, all parabolas are similar, meaning that while they can be different sizes, they are all the same shape. See Also ======== https://en.wikipedia.org/wiki/Parabola Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.eccentricity 1 Notes ----- The eccentricity for every Parabola is 1 by definition. """ return S.One def equation(self, x='x', y='y'): """The equation of the parabola. Parameters ========== x : str, optional Label for the x-axis. Default value is 'x'. y : str, optional Label for the y-axis. Default value is 'y'. Returns ======= equation : SymPy expression Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.equation() -x**2 - 16*y + 64 >>> p1.equation('f') -f**2 - 16*y + 64 >>> p1.equation(y='z') -x**2 - 16*z + 64 """ x = _symbol(x, real=True) y = _symbol(y, real=True) if (self.axis_of_symmetry.slope == 0): t1 = 4 * (self.p_parameter) * (x - self.vertex.x) t2 = (y - self.vertex.y)**2 else: t1 = 4 * (self.p_parameter) * (y - self.vertex.y) t2 = (x - self.vertex.x)**2 return t1 - t2 @property def focal_length(self): """The focal length of the parabola. Returns ======= focal_lenght : number or symbolic expression Notes ===== The distance between the vertex and the focus (or the vertex and directrix), measured along the axis of symmetry, is the "focal length". See Also ======== https://en.wikipedia.org/wiki/Parabola Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.focal_length 4 """ distance = self.directrix.distance(self.focus) focal_length = distance/2 return focal_length @property def focus(self): """The focus of the parabola. Returns ======= focus : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Parabola, Point, Line >>> f1 = Point(0, 0) >>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8))) >>> p1.focus Point2D(0, 0) """ return self.args[0] def intersection(self, o): """The intersection of the parabola and another geometrical entity `o`. Parameters ========== o : GeometryEntity, LinearEntity Returns ======= intersection : list of GeometryEntity objects Examples ======== >>> from sympy import Parabola, Point, Ellipse, Line, Segment >>> p1 = Point(0,0) >>> l1 = Line(Point(1, -2), Point(-1,-2)) >>> parabola1 = Parabola(p1, l1) >>> parabola1.intersection(Ellipse(Point(0, 0), 2, 5)) [Point2D(-2, 0), Point2D(2, 0)] >>> parabola1.intersection(Line(Point(-7, 3), Point(12, 3))) [Point2D(-4, 3), Point2D(4, 3)] >>> parabola1.intersection(Segment((-12, -65), (14, -68))) [] """ x, y = symbols('x y', real=True) parabola_eq = self.equation() if isinstance(o, Parabola): if o in self: return [o] else: return list(ordered([Point(i) for i in solve([parabola_eq, o.equation()], [x, y])])) elif isinstance(o, Point2D): if simplify(parabola_eq.subs([(x, o._args[0]), (y, o._args[1])])) == 0: return [o] else: return [] elif isinstance(o, (Segment2D, Ray2D)): result = solve([parabola_eq, Line2D(o.points[0], o.points[1]).equation()], [x, y]) return list(ordered([Point2D(i) for i in result if i in o])) elif isinstance(o, (Line2D, Ellipse)): return list(ordered([Point2D(i) for i in solve([parabola_eq, o.equation()], [x, y])])) elif isinstance(o, LinearEntity3D): raise TypeError('Entity must be two dimensional, not three dimensional') else: raise TypeError('Wrong type of argument were put') @property def p_parameter(self): """P is a parameter of parabola. Returns ======= p : number or symbolic expression Notes ===== The absolute value of p is the focal length. The sign on p tells which way the parabola faces. Vertical parabolas that open up and horizontal that open right, give a positive value for p. Vertical parabolas that open down and horizontal that open left, give a negative value for p. See Also ======== http://www.sparknotes.com/math/precalc/conicsections/section2.rhtml Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.p_parameter -4 """ if self.axis_of_symmetry.slope == 0: x = self.directrix.coefficients[2] p = sign(self.focus.args[0] + x) else: y = self.directrix.coefficients[2] p = sign(self.focus.args[1] + y) return p * self.focal_length @property def vertex(self): """The vertex of the parabola. Returns ======= vertex : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Parabola, Point, Line >>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8))) >>> p1.vertex Point2D(0, 4) """ focus = self.focus if (self.axis_of_symmetry.slope == 0): vertex = Point(focus.args[0] - self.p_parameter, focus.args[1]) else: vertex = Point(focus.args[0], focus.args[1] - self.p_parameter) return vertex