""" Integral Transforms """ from functools import reduce, wraps from itertools import repeat from sympy.core import S, pi, I from sympy.core.add import Add from sympy.core.function import (AppliedUndef, count_ops, Derivative, expand, expand_complex, expand_mul, Function, Lambda, WildFunction) from sympy.core.mul import Mul from sympy.core.numbers import igcd, ilcm from sympy.core.relational import _canonical, Ge, Gt, Lt, Unequality, Eq from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Dummy, symbols, Wild from sympy.core.traversal import postorder_traversal from sympy.functions.combinatorial.factorials import factorial, rf from sympy.functions.elementary.complexes import (re, arg, Abs, polar_lift, periodic_argument) from sympy.functions.elementary.exponential import exp, log, exp_polar from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, tanh, asinh from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import cos, cot, sin, tan, atan from sympy.functions.special.bessel import besseli, besselj, besselk, bessely from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.error_functions import erf, erfc, Ei from sympy.functions.special.gamma_functions import digamma, gamma, lowergamma from sympy.functions.special.hyper import meijerg from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.matrices.matrices import MatrixBase from sympy.polys.matrices.linsolve import _lin_eq2dict, PolyNonlinearError from sympy.polys.polyroots import roots from sympy.polys.polytools import factor, Poly from sympy.polys.rationaltools import together from sympy.polys.rootoftools import CRootOf, RootSum from sympy.simplify import simplify, hyperexpand from sympy.simplify.powsimp import powdenest from sympy.solvers.inequalities import _solve_inequality from sympy.utilities.exceptions import (sympy_deprecation_warning, SymPyDeprecationWarning, ignore_warnings) from sympy.utilities.iterables import iterable from sympy.utilities.misc import debug ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. Explanation =========== This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super().__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. Explanation =========== This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)`` functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`. Also set ``cls._name``. For instance, >>> from sympy import LaplaceTransform >>> LaplaceTransform._name 'Laplace' Implement ``self._collapse_extra`` if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def _try_directly(self, **hints): T = None try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: T = self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: T = None fn = self.function if not fn.is_Add: fn = expand_mul(fn) return fn, T def doit(self, **hints): """ Try to evaluate the transform in closed form. Explanation =========== This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, do not return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ needeval = hints.pop('needeval', False) simplify = hints.pop('simplify', True) hints['simplify'] = simplify fn, T = self._try_directly(**hints) if T is not None: return T if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] if simplify==True: res = Add(*ress).simplify() else: res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral def _simplify(expr, doit): if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Explanation =========== Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): @wraps(func) def wrapper(*args, noconds=default, **kwargs): res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, S.Zero, S.Infinity)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (S.NegativeInfinity, S.Infinity), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = S.NegativeInfinity b = S.Infinity aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = S.Infinity b_ = S.NegativeInfinity aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ is not S.Infinity and a_ != b: a = Max(a_, a) elif b_ is not S.NegativeInfinity and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, S.Zero, S.Infinity)) def _collapse_extra(self, extra): a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. Explanation =========== The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). Examples ======== >>> from sympy import mellin_transform, exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. Examples ======== >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Explanation =========== Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. Examples ======== >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is S.Infinity: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [Abs(x) if x.is_extended_real else x for x in s_multipliers] common_coefficient = S.One for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if not (all(x.is_Rational for x in s_multipliers) and common_coefficient.is_extended_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S.One) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S.One/s_multiplier exponent = S.One/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs = facs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs = dfacs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp): if fact.is_Pow: base = fact.base exp_ = fact.exp else: base = exp_polar(1) exp_ = fact.exp if exp_.is_Integer: cond = is_numer if exp_ < 0: cond = not cond args += [(base, cond)]*Abs(exp_) continue elif not base.has(s): a, b = linear_arg(exp_) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S.One, -c + 1)] lgammas += [(S.One, -c)] else: ufacs += [-1] ugammas += [(S.NegativeOne, c + 1)] lgammas += [(S.NegativeOne, c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = Abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue try: G = meijerg(a, b, C/x**e) except ValueError: continue if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - Abs(C))*h.args[0].args[0] \ + Heaviside(Abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [Abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), Abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): # IntegralTransform's doit will cause this hint to exist, but # InverseMellinTransform should ignore it hints.pop('simplify', True) global _allowed if _allowed is None: _allowed = { exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf} for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): c = self.__class__._c return Integral(F*x**(-s), (s, c - S.ImaginaryUnit*S.Infinity, c + S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. Explanation =========== This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the SymPy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy import inverse_mellin_transform, oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) x*(1 - 1/x**2)*Heaviside(x - 1)/2 >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (1/2 - x**2/2)*Heaviside(1 - x)/x See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. Examples ======== >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (Abs(ex1) <= Abs(a)**n) == True: return False if n < 0 and (Abs(ex1) >= Abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b in (True, False): return True return Unequality(x, y) def repl(ex, *args): if ex in (True, False): return bool(ex) return ex.replace(*args) from sympy.simplify.radsimp import collect_abs expr = collect_abs(expr) expr = repl(expr, Lt, replie) expr = repl(expr, Gt, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) def expand_dirac_delta(expr): """ Expand an expression involving DiractDelta to get it as a linear combination of DiracDelta functions. """ return _lin_eq2dict(expr, expr.atoms(DiracDelta)) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. This backend assumes that the frontend has already split sums such that `f` is to an addition anymore. """ s = Dummy('s') a = Wild('a', exclude=[t]) deltazero = [] deltanonzero = [] try: integratable, deltadict = expand_dirac_delta(f) except PolyNonlinearError: raise IntegralTransformError( 'Laplace', f, 'could not expand DiracDelta expressions') for dirac_func, dirac_coeff in deltadict.items(): p = dirac_func.match(DiracDelta(a*t)) if p: deltazero.append(dirac_coeff.subs(t,0)/p[a]) else: if dirac_func.args[0].subs(t,0).is_zero: raise IntegralTransformError('Laplace', f,\ 'not implemented yet.') else: deltanonzero.append(dirac_func*dirac_coeff) F = Add(integrate(exp(-s*t) * Add(integratable, *deltanonzero), (t, S.Zero, S.Infinity)), Add(*deltazero)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), S.NegativeInfinity, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = S.NegativeInfinity aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*Abs(arg((s + w3)*q)) < w2, p*Abs(arg((s + w3)*q)) <= w2, Abs(periodic_argument((s + w3)**p*q, w1)) < w2, Abs(periodic_argument((s + w3)**p*q, w1)) <= w2, Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) < w2, Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = S.Infinity aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*Abs(arg(s*w5))*w2)*Abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - Abs(periodic_argument(s**w1*w5, q))*w2)*Abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(Abs(periodic_argument(polar_lift(s)**w1*w5, q))*w2 )*Abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ is not S.Infinity: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux.canonical if aux.is_Relational else aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] is not S.NegativeInfinity] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = list(ordered(conds2)) def cnt(expr): if expr in (True, False): return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] # XXX is [0] always the right one? def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) def _laplace_deep_collect(f, t): """ This is an internal helper function that traverses through the epression tree of `f(t)` and collects arguments. The purpose of it is that anything like `f(w*t-1*t-c)` will be written as `f((w-1)*t-c)` such that it can match `f(a*t+b)`. """ func = f.func args = list(f.args) if len(f.args) == 0: return f else: for k in range(len(args)): args[k] = _laplace_deep_collect(args[k], t) if func.is_Add: return func(*args).collect(t) else: return func(*args) def _laplace_build_rules(t, s): """ This is an internal helper function that returns the table of Laplace transfrom rules in terms of the time variable `t` and the frequency variable `s`. It is used by `_laplace_apply_rules`. """ a = Wild('a', exclude=[t]) b = Wild('b', exclude=[t]) n = Wild('n', exclude=[t]) tau = Wild('tau', exclude=[t]) omega = Wild('omega', exclude=[t]) dco = lambda f: _laplace_deep_collect(f,t) laplace_transform_rules = [ # ( time domain, # laplace domain, # condition, convergence plane, preparation function ) # # Catch constant (would otherwise be treated by 2.12) (a, a/s, S.true, S.Zero, dco), # DiracDelta rules (DiracDelta(a*t-b), exp(-s*b/a)/Abs(a), Or(And(a>0, b>=0), And(a<0, b<=0)), S.Zero, dco), (DiracDelta(a*t-b), S(0), Or(And(a<0, b>=0), And(a>0, b<=0)), S.Zero, dco), # Rules from http://eqworld.ipmnet.ru/en/auxiliary/inttrans/ # 2.1 (1, 1/s, S.true, S.Zero, dco), # 2.2 expressed in terms of Heaviside (Heaviside(a*t-b), exp(-s*b/a)/s, And(a>0, b>0), S.Zero, dco), (Heaviside(a*t-b), (1-exp(-s*b/a))/s, And(a<0, b<0), S.Zero, dco), (Heaviside(a*t-b), 1/s, And(a>0, b<=0), S.Zero, dco), (Heaviside(a*t-b), 0, And(a<0, b>0), S.Zero, dco), # 2.3 (t, 1/s**2, S.true, S.Zero, dco), # 2.4 (1/(a*t+b), -exp(-b/a*s)*Ei(-b/a*s)/a, a>0, S.Zero, dco), # 2.5 and 2.6 are covered by 2.11 # 2.7 (1/sqrt(a*t+b), sqrt(a*pi/s)*exp(b/a*s)*erfc(sqrt(b/a*s))/a, a>0, S.Zero, dco), # 2.8 (sqrt(t)/(t+b), sqrt(pi/s)-pi*sqrt(b)*exp(b*s)*erfc(sqrt(b*s)), S.true, S.Zero, dco), # 2.9 ((a*t+b)**(-S(3)/2), 2*b**(-S(1)/2)-2*(pi*s/a)**(S(1)/2)*exp(b/a*s)*erfc(sqrt(b/a*s))/a, a>0, S.Zero, dco), # 2.10 (t**(S(1)/2)*(t+a)**(-1), (pi/s)**(S(1)/2)-pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)), S.true, S.Zero, dco), # 2.11 (1/(a*sqrt(t) + t**(3/2)), pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)), S.true, S.Zero, dco), # 2.12 (t**n, gamma(n+1)/s**(n+1), n>-1, S.Zero, dco), # 2.13 ((a*t+b)**n, lowergamma(n+1, b/a*s)*exp(-b/a*s)/s**(n+1)/a, And(n>-1, a>0), S.Zero, dco), # 2.14 (t**n/(t+a), a**n*gamma(n+1)*lowergamma(-n,a*s), n>-1, S.Zero, dco), # 3.1 (exp(a*t-tau), exp(-tau)/(s-a), S.true, a, dco), # 3.2 (t*exp(a*t-tau), exp(-tau)/(s-a)**2, S.true, a, dco), # 3.3 (t**n*exp(a*t), gamma(n+1)/(s-a)**(n+1), n>-1, a, dco), # 3.4 and 3.5 cannot be covered here because they are # sums and only the individual sum terms will get here. # 3.6 (exp(-a*t**2), sqrt(pi/4/a)*exp(s**2/4/a)*erfc(s/sqrt(4*a)), a>0, S.Zero, dco), # 3.7 (t*exp(-a*t**2), 1/(2*a)-2/sqrt(pi)/(4*a)**(S(3)/2)*s*erfc(s/sqrt(4*a)), S.true, S.Zero, dco), # 3.8 (exp(-a/t), 2*sqrt(a/s)*besselk(1, 2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.9 (sqrt(t)*exp(-a/t), S(1)/2*sqrt(pi/s**3)*(1+2*sqrt(a*s))*exp(-2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.10 (exp(-a/t)/sqrt(t), sqrt(pi/s)*exp(-2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.11 (exp(-a/t)/(t*sqrt(t)), sqrt(pi/a)*exp(-2*sqrt(a*s)), a>0, S.Zero, dco), # 3.12 (t**n*exp(-a/t), 2*(a/s)**((n+1)/2)*besselk(n+1, 2*sqrt(a*s)), a>0, S.Zero, dco), # 3.13 (exp(-2*sqrt(a*t)), s**(-1)-sqrt(pi*a)*s**(-S(3)/2)*exp(a/s)*erfc(sqrt(a/s)), S.true, S.Zero, dco), # 3.14 (exp(-2*sqrt(a*t))/sqrt(t), (pi/s)**(S(1)/2)*exp(a/s)*erfc(sqrt(a/s)), S.true, S.Zero, dco), # 4.1 (sinh(a*t), a/(s**2-a**2), S.true, Abs(a), dco), # 4.2 (sinh(a*t)**2, 2*a**2/(s**3-4*a**2*s**2), S.true, Abs(2*a), dco), # 4.3 (sinh(a*t)/t, log((s+a)/(s-a))/2, S.true, a, dco), # 4.4 (t**n*sinh(a*t), gamma(n+1)/2*((s-a)**(-n-1)-(s+a)**(-n-1)), n>-2, Abs(a), dco), # 4.5 (sinh(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(a/s), S.true, S.Zero, dco), # 4.6 (sqrt(t)*sinh(2*sqrt(a*t)), pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s)*erf(sqrt(a/s))-a**(S(1)/2)*s**(-2), S.true, S.Zero, dco), # 4.7 (sinh(2*sqrt(a*t))/sqrt(t), pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s)*erf(sqrt(a/s)), S.true, S.Zero, dco), # 4.8 (sinh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)-1), S.true, S.Zero, dco), # 4.9 (cosh(a*t), s/(s**2-a**2), S.true, Abs(a), dco), # 4.10 (cosh(a*t)**2, (s**2-2*a**2)/(s**3-4*a**2*s**2), S.true, Abs(2*a), dco), # 4.11 (t**n*cosh(a*t), gamma(n+1)/2*((s-a)**(-n-1)+(s+a)**(-n-1)), n>-1, Abs(a), dco), # 4.12 (cosh(2*sqrt(a*t)), 1/s+sqrt(pi*a)/s/sqrt(s)*exp(a/s)*erf(sqrt(a/s)), S.true, S.Zero, dco), # 4.13 (sqrt(t)*cosh(2*sqrt(a*t)), pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s), S.true, S.Zero, dco), # 4.14 (cosh(2*sqrt(a*t))/sqrt(t), pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s), S.true, S.Zero, dco), # 4.15 (cosh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)+1), S.true, S.Zero, dco), # 5.1 (log(a*t), -log(s/a+S.EulerGamma)/s, a>0, S.Zero, dco), # 5.2 (log(1+a*t), -exp(s/a)/s*Ei(-s/a), S.true, S.Zero, dco), # 5.3 (log(a*t+b), (log(b)-exp(s/b/a)/s*a*Ei(-s/b))/s*a, a>0, S.Zero, dco), # 5.4 is covered by 5.7 # 5.5 (log(t)/sqrt(t), -sqrt(pi/s)*(log(4*s)+S.EulerGamma), S.true, S.Zero, dco), # 5.6 is covered by 5.7 # 5.7 (t**n*log(t), gamma(n+1)*s**(-n-1)*(digamma(n+1)-log(s)), n>-1, S.Zero, dco), # 5.8 (log(a*t)**2, ((log(s/a)+S.EulerGamma)**2+pi**2/6)/s, a>0, S.Zero, dco), # 5.9 (exp(-a*t)*log(t), -(log(s+a)+S.EulerGamma)/(s+a), S.true, -a, dco), # 6.1 (sin(omega*t), omega/(s**2+omega**2), S.true, S.Zero, dco), # 6.2 (Abs(sin(omega*t)), omega/(s**2+omega**2)*coth(pi*s/2/omega), omega>0, S.Zero, dco), # 6.3 and 6.4 are covered by 1.8 # 6.5 is covered by 1.8 together with 2.5 # 6.6 (sin(omega*t)/t, atan(omega/s), S.true, S.Zero, dco), # 6.7 (sin(omega*t)**2/t, log(1+4*omega**2/s**2)/4, S.true, S.Zero, dco), # 6.8 (sin(omega*t)**2/t**2, omega*atan(2*omega/s)-s*log(1+4*omega**2/s**2)/4, S.true, S.Zero, dco), # 6.9 (sin(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(-a/s), a>0, S.Zero, dco), # 6.10 (sin(2*sqrt(a*t))/t, pi*erf(sqrt(a/s)), a>0, S.Zero, dco), # 6.11 (cos(omega*t), s/(s**2+omega**2), S.true, S.Zero, dco), # 6.12 (cos(omega*t)**2, (s**2+2*omega**2)/(s**2+4*omega**2)/s, S.true, S.Zero, dco), # 6.13 is covered by 1.9 together with 2.5 # 6.14 and 6.15 cannot be done with this method, the respective sum # parts do not converge. Solve elsewhere if really needed. # 6.16 (sqrt(t)*cos(2*sqrt(a*t)), sqrt(pi)/2*s**(-S(5)/2)*(s-2*a)*exp(-a/s), a>0, S.Zero, dco), # 6.17 (cos(2*sqrt(a*t))/sqrt(t), sqrt(pi/s)*exp(-a/s), a>0, S.Zero, dco), # 6.18 (sin(a*t)*sin(b*t), 2*a*b*s/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.19 (cos(a*t)*sin(b*t), b*(s**2-a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.20 (cos(a*t)*cos(b*t), s*(s**2+a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.21 (exp(b*t)*sin(a*t), a/((s-b)**2+a**2), S.true, b, dco), # 6.22 (exp(b*t)*cos(a*t), (s-b)/((s-b)**2+a**2), S.true, b, dco), # 7.1 (erf(a*t), exp(s**2/(2*a)**2)*erfc(s/(2*a))/s, a>0, S.Zero, dco), # 7.2 (erf(sqrt(a*t)), sqrt(a)/sqrt(s+a)/s, a>0, S.Zero, dco), # 7.3 (exp(a*t)*erf(sqrt(a*t)), sqrt(a)/sqrt(s)/(s-a), a>0, a, dco), # 7.4 (erf(sqrt(a/t)/2), (1-exp(-sqrt(a*s)))/s, a>0, S.Zero, dco), # 7.5 (erfc(sqrt(a*t)), (sqrt(s+a)-sqrt(a))/sqrt(s+a)/s, a>0, S.Zero, dco), # 7.6 (exp(a*t)*erfc(sqrt(a*t)), 1/(s+sqrt(a*s)), a>0, S.Zero, dco), # 7.7 (erfc(sqrt(a/t)/2), exp(-sqrt(a*s))/s, a>0, S.Zero, dco), # 8.1, 8.2 (besselj(n, a*t), a**n/(sqrt(s**2+a**2)*(s+sqrt(s**2+a**2))**n), And(a>0, n>-1), S.Zero, dco), # 8.3, 8.4 (t**b*besselj(n, a*t), 2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2+a**2)**(-n-S.Half), And(And(a>0, n>-S.Half), Eq(b, n)), S.Zero, dco), # 8.5 (t**b*besselj(n, a*t), 2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2+a**2)**(-n-S(3)/2), And(And(a>0, n>-1), Eq(b, n+1)), S.Zero, dco), # 8.6 (besselj(0, 2*sqrt(a*t)), exp(-a/s)/s, a>0, S.Zero, dco), # 8.7, 8.8 (t**(b)*besselj(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(-a/s), And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco), # 8.9 (besselj(0, a*sqrt(t**2+b*t)), exp(b*s-b*sqrt(s**2+a**2))/sqrt(s**2+a**2), b>0, S.Zero, dco), # 8.10, 8.11 (besseli(n, a*t), a**n/(sqrt(s**2-a**2)*(s+sqrt(s**2-a**2))**n), And(a>0, n>-1), Abs(a), dco), # 8.12 (t**b*besseli(n, a*t), 2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2-a**2)**(-n-S.Half), And(And(a>0, n>-S.Half), Eq(b, n)), Abs(a), dco), # 8.13 (t**b*besseli(n, a*t), 2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2-a**2)**(-n-S(3)/2), And(And(a>0, n>-1), Eq(b, n+1)), Abs(a), dco), # 8.15, 8.16 (t**(b)*besseli(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(a/s), And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco), # 8.17 (bessely(0, a*t), -2/pi*asinh(s/a)/sqrt(s**2+a**2), a>0, S.Zero, dco), # 8.18 (besselk(0, a*t), (log(s+sqrt(s**2-a**2)))/(sqrt(s**2-a**2)), a>0, Abs(a), dco) ] return laplace_transform_rules def _laplace_cr(f, a, c, **hints): """ Internal helper function that will return `(f, a, c)` unless `**hints` contains `noconds=True`, in which case it will only return `f`. """ conds = not hints.get('noconds', False) if conds: return f, a, c else: return f def _laplace_rule_timescale(f, t, s, doit=True, **hints): r""" This internal helper function tries to apply the time-scaling rule of the Laplace transform and returns `None` if it cannot do it. Time-scaling means the following: if $F(s)$ is the Laplace transform of, $f(t)$, then, for any $a>0$, the Laplace transform of $f(at)$ will be $\frac1a F(\frac{s}{a})$. This scaling will also affect the transform's convergence plane. """ _simplify = hints.pop('simplify', True) b = Wild('b', exclude=[t]) g = WildFunction('g', nargs=1) k, func = f.as_independent(t, as_Add=False) ma1 = func.match(g) if ma1: arg = ma1[g].args[0].collect(t) ma2 = arg.match(b*t) if ma2 and ma2[b]>0: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: amplitude and time scaling (1.1, 1.2)') if ma2[b]==1: if doit==True and not any(func.has(t) for func in ma1[g].atoms(AppliedUndef)): return k*_laplace_transform(ma1[g].func(t), t, s, simplify=_simplify) else: return k*LaplaceTransform(ma1[g].func(t), t, s, **hints) else: L = _laplace_apply_rules(ma1[g].func(t), t, s/ma2[b], doit=doit, **hints) try: r, p, c = L return (k/ma2[b]*r, p, c) except TypeError: return k/ma2[b]*L return None def _laplace_rule_heaviside(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing the `Heaviside` function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) b = Wild('b', exclude=[t]) y = Wild('y') g = WildFunction('g', nargs=1) k, func = f.as_independent(t, as_Add=False) ma1 = func.match(Heaviside(y)*g) if ma1: ma2 = ma1[y].match(t-a) ma3 = ma1[g].args[0].collect(t).match(t-b) if ma2 and ma2[a]>0 and ma3 and ma2[a]==ma3[b]: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s, %s )'%(f, ma1, ma2, ma3)) debug(' rule: time shift (1.3)') L = _laplace_apply_rules(ma1[g].func(t), t, s, doit=doit, **hints) try: r, p, c = L return (k*exp(-ma2[a]*s)*r, p, c) except TypeError: return k*exp(-ma2[a]*s)*L return None def _laplace_rule_exp(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing the `exp` function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) ma1 = func.match(exp(y)*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with exp (1.5)') L = _laplace_apply_rules(ma1[z], t, s-ma2[a], doit=doit, **hints) try: r, p, c = L return (r, p+ma2[a], c) except TypeError: return L return None def _laplace_rule_trig(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing a trigonometric function (`sin`, `cos`, `sinh`, `cosh`, ) and returns `None` if it cannot do it. """ _simplify = hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) # All of the rules have a very similar form: trig(y)*z is matched, and then # two copies of the Laplace transform of z are shifted in the s Domain # and added with a weight; see rules 1.6 to 1.9 in # http://eqworld.ipmnet.ru/en/auxiliary/inttrans/laplace1.pdf # The parameters in the tuples are (fm, nu, s1, s2, sd): # fm: Function to match # nu: Number of the rule, for debug purposes # s1: weight of the sum, 'I' for sin and '1' for all others # s2: sign of the second copy of the Laplace transform of z # sd: shift direction; shift along real or imaginary axis if `1` or `I` trigrules = [(sinh(y), '1.6', 1, -1, 1), (cosh(y), '1.7', 1, 1, 1), (sin(y), '1.8', -I, -1, I), (cos(y), '1.9', 1, 1, I)] for trigrule in trigrules: fm, nu, s1, s2, sd = trigrule ma1 = func.match(fm*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with %s (%s)'%(fm.func, nu)) L = _laplace_apply_rules(ma1[z], t, s, doit=doit, **hints) try: r, p, c = L # The convergence plane changes only if the shift has been # done along the real axis: if sd==1: cp_shift = Abs(ma2[a]) else: cp_shift = 0 return ((s1*(r.subs(s, s-sd*ma2[a])+\ s2*r.subs(s, s+sd*ma2[a]))).simplify()/2, p+cp_shift, c) except TypeError: if doit==True and _simplify==True: return (s1*(L.subs(s, s-sd*ma2[a])+\ s2*L.subs(s, s+sd*ma2[a]))).simplify()/2 else: return (s1*(L.subs(s, s-sd*ma2[a])+\ s2*L.subs(s, s+sd*ma2[a])))/2 return None def _laplace_rule_diff(f, t, s, doit=True, **hints): """ This internal helper function tries to transform an expression containing a derivative of an undefined function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') n = Wild('n', exclude=[t]) g = WildFunction('g', nargs=1) ma1 = f.match(a*Derivative(g, (t, n))) if ma1 and ma1[g].args[0] == t and ma1[n].is_integer: debug('_laplace_apply_rules match:') debug(' f: %s'%(f,)) debug(' rule: time derivative (1.11, 1.12)') d = [] for k in range(ma1[n]): if k==0: y = ma1[g].func(t).subs(t, 0) else: y = Derivative(ma1[g].func(t), (t, k)).subs(t, 0) d.append(s**(ma1[n]-k-1)*y) r = s**ma1[n]*_laplace_apply_rules(ma1[g].func(t), t, s, doit=doit, **hints) return r - Add(*d) return None def _laplace_apply_rules(f, t, s, doit=True, **hints): """ Helper function for the class LaplaceTransform. This function does a Laplace transform based on rules and, after applying the rules, hands the rest over to `_laplace_transform`, which will attempt to integrate. If it is called with `doit=False`, then it will instead return `LaplaceTransform` objects. """ k, func = f.as_independent(t, as_Add=False) simple_rules = _laplace_build_rules(t, s) for t_dom, s_dom, check, plane, prep in simple_rules: ma = prep(func).match(t_dom) if ma: debug('_laplace_apply_rules match:') debug(' f: %s'%(func,)) debug(' rule: %s o---o %s'%(t_dom, s_dom)) try: debug(' try %s'%(check,)) c = check.xreplace(ma) debug(' check %s -> %s'%(check, c)) if c==True: return _laplace_cr(k*s_dom.xreplace(ma), plane.xreplace(ma), S.true, **hints) except Exception: debug('_laplace_apply_rules did not match.') if f.has(DiracDelta): return None prog_rules = [_laplace_rule_timescale, _laplace_rule_heaviside, _laplace_rule_exp, _laplace_rule_trig, _laplace_rule_diff] for p_rule in prog_rules: LT = p_rule(f, t, s, doit=doit, **hints) if LT is not None: return LT return None class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): LT = _laplace_apply_rules(f, t, s, **hints) if LT is None: _simplify = hints.pop('simplify', True) debug('_laplace_apply_rules could not match function %s'%(f,)) debug(' hints: %s'%(hints,)) return _laplace_transform(f, t, s, simplify=_simplify, **hints) else: return LT def _as_integral(self, f, t, s): return Integral(f*exp(-s*t), (t, S.Zero, S.Infinity)) def _collapse_extra(self, extra): conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def _try_directly(self, **hints): fn = self.function debug('----> _try_directly: %s'%(fn, )) t_ = self.function_variable s_ = self.transform_variable LT = None if not fn.is_Add: fn = expand_mul(fn) try: LT = self._compute_transform(fn, t_, s_, **hints) except IntegralTransformError: LT = None return fn, LT def laplace_transform(f, t, s, legacy_matrix=True, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_{0^{-}}^\infty e^{-st} f(t) \mathrm{d}t. Explanation =========== For all sensible functions, this converges absolutely in a half-plane .. math :: a < \operatorname{Re}(s) This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `a` is the half-plane of convergence, and `cond` are auxiliary convergence conditions. The implementation is rule-based, and if you are interested in which rules are applied, and whether integration is attemped, you can switch debug information on by setting ``sympy.SYMPY_DEBUG=True``. The lower bound is `0-`, meaning that this bound should be approached from the lower side. This is only necessary if distributions are involved. At present, it is only done if `f(t)` contains ``DiracDelta``, in which case the Laplace transform is computed implicitly as .. math :: F(s) = \lim_{\tau\to 0^{-}} \int_{\tau}^\infty e^{-st} f(t) \mathrm{d}t by applying rules. If the integral cannot be fully computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). .. deprecated:: 1.9 Legacy behavior for matrices where ``laplace_transform`` with ``noconds=False`` (the default) returns a Matrix whose elements are tuples. The behavior of ``laplace_transform`` for matrices will change in a future release of SymPy to return a tuple of the transformed Matrix and the convergence conditions for the matrix as a whole. Use ``legacy_matrix=False`` to enable the new behavior. Examples ======== >>> from sympy import DiracDelta, exp, laplace_transform >>> from sympy.abc import t, s, a >>> laplace_transform(t**4, t, s) (24/s**5, 0, True) >>> laplace_transform(t**a, t, s) (gamma(a + 1)/(s*s**a), 0, re(a) > -1) >>> laplace_transform(DiracDelta(t)-a*exp(-a*t),t,s) (s/(a + s), Max(0, -a), True) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ debug('\n***** laplace_transform(%s, %s, %s)'%(f, t, s)) if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): conds = not hints.get('noconds', False) if conds and legacy_matrix: sympy_deprecation_warning( """ Calling laplace_transform() on a Matrix with noconds=False (the default) is deprecated. Either noconds=True or use legacy_matrix=False to get the new behavior. """, deprecated_since_version="1.9", active_deprecations_target="deprecated-laplace-transform-matrix", ) # Temporarily disable the deprecation warning for non-Expr objects # in Matrix with ignore_warnings(SymPyDeprecationWarning): return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) else: elements_trans = [laplace_transform(fij, t, s, **hints) for fij in f] if conds: elements, avals, conditions = zip(*elements_trans) f_laplace = type(f)(*f.shape, elements) return f_laplace, Max(*avals), And(*conditions) else: return type(f)(*f.shape, elements_trans) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/Abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/Abs(coeff))*e2 if F.is_rational_function(s): F = F.apart(s) if F.is_Add: f = Add(*[_inverse_laplace_transform(X, s, t, plane, simplify)\ for X in F.args]) return _simplify(f.subs(t, t_), simplify), True try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, S.Infinity), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg, H0=S.Half): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg, H0) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k, H0) else: k = log(rel.lts) return Heaviside(-(t + k), H0) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): c = self.__class__._c return Integral(exp(s*t)*F, (s, c - S.ImaginaryUnit*S.Infinity, c + S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. Explanation =========== The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the SymPy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy import inverse_laplace_transform, exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t) See Also ======== laplace_transform, _fast_inverse_laplace hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) def _fast_inverse_laplace(e, s, t): """Fast inverse Laplace transform of rational function including RootSum""" a, b, n = symbols('a, b, n', cls=Wild, exclude=[s]) def _ilt(e): if not e.has(s): return e elif e.is_Add: return _ilt_add(e) elif e.is_Mul: return _ilt_mul(e) elif e.is_Pow: return _ilt_pow(e) elif isinstance(e, RootSum): return _ilt_rootsum(e) else: raise NotImplementedError def _ilt_add(e): return e.func(*map(_ilt, e.args)) def _ilt_mul(e): coeff, expr = e.as_independent(s) if expr.is_Mul: raise NotImplementedError return coeff * _ilt(expr) def _ilt_pow(e): match = e.match((a*s + b)**n) if match is not None: nm, am, bm = match[n], match[a], match[b] if nm.is_Integer and nm < 0: return t**(-nm-1)*exp(-(bm/am)*t)/(am**-nm*gamma(-nm)) if nm == 1: return exp(-(bm/am)*t) / am raise NotImplementedError def _ilt_rootsum(e): expr = e.fun.expr [variable] = e.fun.variables return RootSum(e.poly, Lambda(variable, together(_ilt(expr)))) return _ilt(e) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): r""" Compute a general Fourier-type transform .. math:: F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx. For suitable choice of *a* and *b*, this reduces to the standard Fourier and inverse Fourier transforms. """ F = integrate(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, S.NegativeInfinity, S.Infinity)) if integral_f in (S.NegativeInfinity, S.Infinity, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() return Integral(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of ``f``, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, S.Zero, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, S.Zero, S.Infinity)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_sine_transform, exp, sqrt, gamma >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_cosine_transform, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ F = integrate(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): return Integral(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)