from sympy.core.assumptions import check_assumptions from sympy.core.logic import fuzzy_and from sympy.core.sympify import _sympify from sympy.sets.sets import Set from .matexpr import MatrixExpr class MatrixSet(Set): """ MatrixSet represents the set of matrices with ``shape = (n, m)`` over the given set. Examples ======== >>> from sympy.matrices import MatrixSet >>> from sympy import S, I, Matrix >>> M = MatrixSet(2, 2, set=S.Reals) >>> X = Matrix([[1, 2], [3, 4]]) >>> X in M True >>> X = Matrix([[1, 2], [I, 4]]) >>> X in M False """ is_empty = False def __new__(cls, n, m, set): n, m, set = _sympify(n), _sympify(m), _sympify(set) cls._check_dim(n) cls._check_dim(m) if not isinstance(set, Set): raise TypeError("{} should be an instance of Set.".format(set)) return Set.__new__(cls, n, m, set) @property def shape(self): return self.args[:2] @property def set(self): return self.args[2] def _contains(self, other): if not isinstance(other, MatrixExpr): raise TypeError("{} should be an instance of MatrixExpr.".format(other)) if other.shape != self.shape: are_symbolic = any(_sympify(x).is_Symbol for x in other.shape + self.shape) if are_symbolic: return None return False return fuzzy_and(self.set.contains(x) for x in other) @classmethod def _check_dim(cls, dim): """Helper function to check invalid matrix dimensions""" ok = check_assumptions(dim, integer=True, nonnegative=True) if ok is False: raise ValueError( "The dimension specification {} should be " "a nonnegative integer.".format(dim))