"""Primitive circuit operations on quantum circuits.""" from functools import reduce from sympy.core.sorting import default_sort_key from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.utilities import numbered_symbols from sympy.physics.quantum.gate import Gate __all__ = [ 'kmp_table', 'find_subcircuit', 'replace_subcircuit', 'convert_to_symbolic_indices', 'convert_to_real_indices', 'random_reduce', 'random_insert' ] def kmp_table(word): """Build the 'partial match' table of the Knuth-Morris-Pratt algorithm. Note: This is applicable to strings or quantum circuits represented as tuples. """ # Current position in subcircuit pos = 2 # Beginning position of candidate substring that # may reappear later in word cnd = 0 # The 'partial match' table that helps one determine # the next location to start substring search table = list() table.append(-1) table.append(0) while pos < len(word): if word[pos - 1] == word[cnd]: cnd = cnd + 1 table.append(cnd) pos = pos + 1 elif cnd > 0: cnd = table[cnd] else: table.append(0) pos = pos + 1 return table def find_subcircuit(circuit, subcircuit, start=0, end=0): """Finds the subcircuit in circuit, if it exists. Explanation =========== If the subcircuit exists, the index of the start of the subcircuit in circuit is returned; otherwise, -1 is returned. The algorithm that is implemented is the Knuth-Morris-Pratt algorithm. Parameters ========== circuit : tuple, Gate or Mul A tuple of Gates or Mul representing a quantum circuit subcircuit : tuple, Gate or Mul A tuple of Gates or Mul to find in circuit start : int The location to start looking for subcircuit. If start is the same or past end, -1 is returned. end : int The last place to look for a subcircuit. If end is less than 1 (one), then the length of circuit is taken to be end. Examples ======== Find the first instance of a subcircuit: >>> from sympy.physics.quantum.circuitutils import find_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0) >>> subcircuit = Z(0)*Y(0) >>> find_subcircuit(circuit, subcircuit) 1 Find the first instance starting at a specific position: >>> find_subcircuit(circuit, subcircuit, start=1) 1 >>> find_subcircuit(circuit, subcircuit, start=2) -1 >>> circuit = circuit*subcircuit >>> find_subcircuit(circuit, subcircuit, start=2) 4 Find the subcircuit within some interval: >>> find_subcircuit(circuit, subcircuit, start=2, end=2) -1 """ if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if len(subcircuit) == 0 or len(subcircuit) > len(circuit): return -1 if end < 1: end = len(circuit) # Location in circuit pos = start # Location in the subcircuit index = 0 # 'Partial match' table table = kmp_table(subcircuit) while (pos + index) < end: if subcircuit[index] == circuit[pos + index]: index = index + 1 else: pos = pos + index - table[index] index = table[index] if table[index] > -1 else 0 if index == len(subcircuit): return pos return -1 def replace_subcircuit(circuit, subcircuit, replace=None, pos=0): """Replaces a subcircuit with another subcircuit in circuit, if it exists. Explanation =========== If multiple instances of subcircuit exists, the first instance is replaced. The position to being searching from (if different from 0) may be optionally given. If subcircuit cannot be found, circuit is returned. Parameters ========== circuit : tuple, Gate or Mul A quantum circuit. subcircuit : tuple, Gate or Mul The circuit to be replaced. replace : tuple, Gate or Mul The replacement circuit. pos : int The location to start search and replace subcircuit, if it exists. This may be used if it is known beforehand that multiple instances exist, and it is desirable to replace a specific instance. If a negative number is given, pos will be defaulted to 0. Examples ======== Find and remove the subcircuit: >>> from sympy.physics.quantum.circuitutils import replace_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0) >>> subcircuit = Z(0)*Y(0) >>> replace_subcircuit(circuit, subcircuit) (X(0), H(0), X(0), H(0), Y(0)) Remove the subcircuit given a starting search point: >>> replace_subcircuit(circuit, subcircuit, pos=1) (X(0), H(0), X(0), H(0), Y(0)) >>> replace_subcircuit(circuit, subcircuit, pos=2) (X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0)) Replace the subcircuit: >>> replacement = H(0)*Z(0) >>> replace_subcircuit(circuit, subcircuit, replace=replacement) (X(0), H(0), Z(0), H(0), X(0), H(0), Y(0)) """ if pos < 0: pos = 0 if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if isinstance(replace, Mul): replace = replace.args elif replace is None: replace = () # Look for the subcircuit starting at pos loc = find_subcircuit(circuit, subcircuit, start=pos) # If subcircuit was found if loc > -1: # Get the gates to the left of subcircuit left = circuit[0:loc] # Get the gates to the right of subcircuit right = circuit[loc + len(subcircuit):len(circuit)] # Recombine the left and right side gates into a circuit circuit = left + replace + right return circuit def _sympify_qubit_map(mapping): new_map = {} for key in mapping: new_map[key] = sympify(mapping[key]) return new_map def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None): """Returns the circuit with symbolic indices and the dictionary mapping symbolic indices to real indices. The mapping is 1 to 1 and onto (bijective). Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects, or a Mul start : Symbol An optional starting symbolic index gen : object An optional numbered symbol generator qubit_map : dict An existing mapping of symbolic indices to real indices All symbolic indices have the format 'i#', where # is some number >= 0. """ if isinstance(seq, Mul): seq = seq.args # A numbered symbol generator index_gen = numbered_symbols(prefix='i', start=-1) cur_ndx = next(index_gen) # keys are symbolic indices; values are real indices ndx_map = {} def create_inverse_map(symb_to_real_map): rev_items = lambda item: tuple([item[1], item[0]]) return dict(map(rev_items, symb_to_real_map.items())) if start is not None: if not isinstance(start, Symbol): msg = 'Expected Symbol for starting index, got %r.' % start raise TypeError(msg) cur_ndx = start if gen is not None: if not isinstance(gen, numbered_symbols().__class__): msg = 'Expected a generator, got %r.' % gen raise TypeError(msg) index_gen = gen if qubit_map is not None: if not isinstance(qubit_map, dict): msg = ('Expected dict for existing map, got ' + '%r.' % qubit_map) raise TypeError(msg) ndx_map = qubit_map ndx_map = _sympify_qubit_map(ndx_map) # keys are real indices; keys are symbolic indices inv_map = create_inverse_map(ndx_map) sym_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): result = convert_to_symbolic_indices(item.args, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif isinstance(item, (tuple, Tuple)): result = convert_to_symbolic_indices(item, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif item in inv_map: sym_item = inv_map[item] else: cur_ndx = next(gen) ndx_map[cur_ndx] = item inv_map[item] = cur_ndx sym_item = cur_ndx if isinstance(item, Gate): sym_item = item.__class__(*sym_item) sym_seq = sym_seq + (sym_item,) return sym_seq, ndx_map, cur_ndx, index_gen def convert_to_real_indices(seq, qubit_map): """Returns the circuit with real indices. Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects or a Mul qubit_map : dict A dictionary mapping symbolic indices to real indices. Examples ======== Change the symbolic indices to real integers: >>> from sympy import symbols >>> from sympy.physics.quantum.circuitutils import convert_to_real_indices >>> from sympy.physics.quantum.gate import X, Y, H >>> i0, i1 = symbols('i:2') >>> index_map = {i0 : 0, i1 : 1} >>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map) (X(0), Y(1), H(0), X(1)) """ if isinstance(seq, Mul): seq = seq.args if not isinstance(qubit_map, dict): msg = 'Expected dict for qubit_map, got %r.' % qubit_map raise TypeError(msg) qubit_map = _sympify_qubit_map(qubit_map) real_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): real_item = convert_to_real_indices(item.args, qubit_map) elif isinstance(item, (tuple, Tuple)): real_item = convert_to_real_indices(item, qubit_map) else: real_item = qubit_map[item] if isinstance(item, Gate): real_item = item.__class__(*real_item) real_seq = real_seq + (real_item,) return real_seq def random_reduce(circuit, gate_ids, seed=None): """Shorten the length of a quantum circuit. Explanation =========== random_reduce looks for circuit identities in circuit, randomly chooses one to remove, and returns a shorter yet equivalent circuit. If no identities are found, the same circuit is returned. Parameters ========== circuit : Gate tuple of Mul A tuple of Gates representing a quantum circuit gate_ids : list, GateIdentity List of gate identities to find in circuit seed : int or list seed used for _randrange; to override the random selection, provide a list of integers: the elements of gate_ids will be tested in the order given by the list """ from sympy.core.random import _randrange if not gate_ids: return circuit if isinstance(circuit, Mul): circuit = circuit.args ids = flatten_ids(gate_ids) # Create the random integer generator with the seed randrange = _randrange(seed) # Look for an identity in the circuit while ids: i = randrange(len(ids)) id = ids.pop(i) if find_subcircuit(circuit, id) != -1: break else: # no identity was found return circuit # return circuit with the identity removed return replace_subcircuit(circuit, id) def random_insert(circuit, choices, seed=None): """Insert a circuit into another quantum circuit. Explanation =========== random_insert randomly chooses a location in the circuit to insert a randomly selected circuit from amongst the given choices. Parameters ========== circuit : Gate tuple or Mul A tuple or Mul of Gates representing a quantum circuit choices : list Set of circuit choices seed : int or list seed used for _randrange; to override the random selections, give a list two integers, [i, j] where i is the circuit location where choice[j] will be inserted. Notes ===== Indices for insertion should be [0, n] if n is the length of the circuit. """ from sympy.core.random import _randrange if not choices: return circuit if isinstance(circuit, Mul): circuit = circuit.args # get the location in the circuit and the element to insert from choices randrange = _randrange(seed) loc = randrange(len(circuit) + 1) choice = choices[randrange(len(choices))] circuit = list(circuit) circuit[loc: loc] = choice return tuple(circuit) # Flatten the GateIdentity objects (with gate rules) into one single list def flatten_ids(ids): collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids, key=default_sort_key) ids = reduce(collapse, ids, []) ids.sort(key=default_sort_key) return ids