from sympy.core.expr import Expr from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices.dense import Matrix from sympy.printing.pretty.stringpict import prettyForm from sympy.core.containers import Tuple from sympy.utilities.iterables import is_sequence from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, to_sympy, to_numpy, to_scipy_sparse ) __all__ = [ 'QuantumError', 'QExpr' ] #----------------------------------------------------------------------------- # Error handling #----------------------------------------------------------------------------- class QuantumError(Exception): pass def _qsympify_sequence(seq): """Convert elements of a sequence to standard form. This is like sympify, but it performs special logic for arguments passed to QExpr. The following conversions are done: * (list, tuple, Tuple) => _qsympify_sequence each element and convert sequence to a Tuple. * basestring => Symbol * Matrix => Matrix * other => sympify Strings are passed to Symbol, not sympify to make sure that variables like 'pi' are kept as Symbols, not the SymPy built-in number subclasses. Examples ======== >>> from sympy.physics.quantum.qexpr import _qsympify_sequence >>> _qsympify_sequence((1,2,[3,4,[1,]])) (1, 2, (3, 4, (1,))) """ return tuple(__qsympify_sequence_helper(seq)) def __qsympify_sequence_helper(seq): """ Helper function for _qsympify_sequence This function does the actual work. """ #base case. If not a list, do Sympification if not is_sequence(seq): if isinstance(seq, Matrix): return seq elif isinstance(seq, str): return Symbol(seq) else: return sympify(seq) # base condition, when seq is QExpr and also # is iterable. if isinstance(seq, QExpr): return seq #if list, recurse on each item in the list result = [__qsympify_sequence_helper(item) for item in seq] return Tuple(*result) #----------------------------------------------------------------------------- # Basic Quantum Expression from which all objects descend #----------------------------------------------------------------------------- class QExpr(Expr): """A base class for all quantum object like operators and states.""" # In sympy, slots are for instance attributes that are computed # dynamically by the __new__ method. They are not part of args, but they # derive from args. # The Hilbert space a quantum Object belongs to. __slots__ = ('hilbert_space') is_commutative = False # The separator used in printing the label. _label_separator = '' @property def free_symbols(self): return {self} def __new__(cls, *args, **kwargs): """Construct a new quantum object. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the quantum object. For a state, this will be its symbol or its set of quantum numbers. Examples ======== >>> from sympy.physics.quantum.qexpr import QExpr >>> q = QExpr(0) >>> q 0 >>> q.label (0,) >>> q.hilbert_space H >>> q.args (0,) >>> q.is_commutative False """ # First compute args and call Expr.__new__ to create the instance args = cls._eval_args(args, **kwargs) if len(args) == 0: args = cls._eval_args(tuple(cls.default_args()), **kwargs) inst = Expr.__new__(cls, *args) # Now set the slots on the instance inst.hilbert_space = cls._eval_hilbert_space(args) return inst @classmethod def _new_rawargs(cls, hilbert_space, *args, **old_assumptions): """Create new instance of this class with hilbert_space and args. This is used to bypass the more complex logic in the ``__new__`` method in cases where you already have the exact ``hilbert_space`` and ``args``. This should be used when you are positive these arguments are valid, in their final, proper form and want to optimize the creation of the object. """ obj = Expr.__new__(cls, *args, **old_assumptions) obj.hilbert_space = hilbert_space return obj #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label is the unique set of identifiers for the object. Usually, this will include all of the information about the state *except* the time (in the case of time-dependent objects). This must be a tuple, rather than a Tuple. """ if len(self.args) == 0: # If there is no label specified, return the default return self._eval_args(list(self.default_args())) else: return self.args @property def is_symbolic(self): return True @classmethod def default_args(self): """If no arguments are specified, then this will return a default set of arguments to be run through the constructor. NOTE: Any classes that override this MUST return a tuple of arguments. Should be overridden by subclasses to specify the default arguments for kets and operators """ raise NotImplementedError("No default arguments for this class!") #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_adjoint(self): obj = Expr._eval_adjoint(self) if obj is None: obj = Expr.__new__(Dagger, self) if isinstance(obj, QExpr): obj.hilbert_space = self.hilbert_space return obj @classmethod def _eval_args(cls, args): """Process the args passed to the __new__ method. This simply runs args through _qsympify_sequence. """ return _qsympify_sequence(args) @classmethod def _eval_hilbert_space(cls, args): """Compute the Hilbert space instance from the args. """ from sympy.physics.quantum.hilbert import HilbertSpace return HilbertSpace() #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- # Utilities for printing: these operate on raw SymPy objects def _print_sequence(self, seq, sep, printer, *args): result = [] for item in seq: result.append(printer._print(item, *args)) return sep.join(result) def _print_sequence_pretty(self, seq, sep, printer, *args): pform = printer._print(seq[0], *args) for item in seq[1:]: pform = prettyForm(*pform.right(sep)) pform = prettyForm(*pform.right(printer._print(item, *args))) return pform # Utilities for printing: these operate prettyForm objects def _print_subscript_pretty(self, a, b): top = prettyForm(*b.left(' '*a.width())) bot = prettyForm(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_superscript_pretty(self, a, b): return a**b def _print_parens_pretty(self, pform, left='(', right=')'): return prettyForm(*pform.parens(left=left, right=right)) # Printing of labels (i.e. args) def _print_label(self, printer, *args): """Prints the label of the QExpr This method prints self.label, using self._label_separator to separate the elements. This method should not be overridden, instead, override _print_contents to change printing behavior. """ return self._print_sequence( self.label, self._label_separator, printer, *args ) def _print_label_repr(self, printer, *args): return self._print_sequence( self.label, ',', printer, *args ) def _print_label_pretty(self, printer, *args): return self._print_sequence_pretty( self.label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): return self._print_sequence( self.label, self._label_separator, printer, *args ) # Printing of contents (default to label) def _print_contents(self, printer, *args): """Printer for contents of QExpr Handles the printing of any unique identifying contents of a QExpr to print as its contents, such as any variables or quantum numbers. The default is to print the label, which is almost always the args. This should not include printing of any brackets or parenteses. """ return self._print_label(printer, *args) def _print_contents_pretty(self, printer, *args): return self._print_label_pretty(printer, *args) def _print_contents_latex(self, printer, *args): return self._print_label_latex(printer, *args) # Main printing methods def _sympystr(self, printer, *args): """Default printing behavior of QExpr objects Handles the default printing of a QExpr. To add other things to the printing of the object, such as an operator name to operators or brackets to states, the class should override the _print/_pretty/_latex functions directly and make calls to _print_contents where appropriate. This allows things like InnerProduct to easily control its printing the printing of contents. """ return self._print_contents(printer, *args) def _sympyrepr(self, printer, *args): classname = self.__class__.__name__ label = self._print_label_repr(printer, *args) return '%s(%s)' % (classname, label) def _pretty(self, printer, *args): pform = self._print_contents_pretty(printer, *args) return pform def _latex(self, printer, *args): return self._print_contents_latex(printer, *args) #------------------------------------------------------------------------- # Methods from Basic and Expr #------------------------------------------------------------------------- def doit(self, **kw_args): return self #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_default_basis(self, **options): raise NotImplementedError('This object does not have a default basis') def _represent(self, *, basis=None, **options): """Represent this object in a given basis. This method dispatches to the actual methods that perform the representation. Subclases of QExpr should define various methods to determine how the object will be represented in various bases. The format of these methods is:: def _represent_BasisName(self, basis, **options): Thus to define how a quantum object is represented in the basis of the operator Position, you would define:: def _represent_Position(self, basis, **options): Usually, basis object will be instances of Operator subclasses, but there is a chance we will relax this in the future to accommodate other types of basis sets that are not associated with an operator. If the ``format`` option is given it can be ("sympy", "numpy", "scipy.sparse"). This will ensure that any matrices that result from representing the object are returned in the appropriate matrix format. Parameters ========== basis : Operator The Operator whose basis functions will be used as the basis for representation. options : dict A dictionary of key/value pairs that give options and hints for the representation, such as the number of basis functions to be used. """ if basis is None: result = self._represent_default_basis(**options) else: result = dispatch_method(self, '_represent', basis, **options) # If we get a matrix representation, convert it to the right format. format = options.get('format', 'sympy') result = self._format_represent(result, format) return result def _format_represent(self, result, format): if format == 'sympy' and not isinstance(result, Matrix): return to_sympy(result) elif format == 'numpy' and not isinstance(result, numpy_ndarray): return to_numpy(result) elif format == 'scipy.sparse' and \ not isinstance(result, scipy_sparse_matrix): return to_scipy_sparse(result) return result def split_commutative_parts(e): """Split into commutative and non-commutative parts.""" c_part, nc_part = e.args_cnc() c_part = list(c_part) return c_part, nc_part def split_qexpr_parts(e): """Split an expression into Expr and noncommutative QExpr parts.""" expr_part = [] qexpr_part = [] for arg in e.args: if not isinstance(arg, QExpr): expr_part.append(arg) else: qexpr_part.append(arg) return expr_part, qexpr_part def dispatch_method(self, basename, arg, **options): """Dispatch a method to the proper handlers.""" method_name = '%s_%s' % (basename, arg.__class__.__name__) if hasattr(self, method_name): f = getattr(self, method_name) # This can raise and we will allow it to propagate. result = f(arg, **options) if result is not None: return result raise NotImplementedError( "%s.%s cannot handle: %r" % (self.__class__.__name__, basename, arg) )