"""Qubits for quantum computing. Todo: * Finish implementing measurement logic. This should include POVM. * Update docstrings. * Update tests. """ import math from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.exponential import log from sympy.core.basic import _sympify from sympy.external.gmpy import SYMPY_INTS from sympy.matrices import Matrix, zeros from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.state import Ket, Bra, State from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix ) from mpmath.libmp.libintmath import bitcount __all__ = [ 'Qubit', 'QubitBra', 'IntQubit', 'IntQubitBra', 'qubit_to_matrix', 'matrix_to_qubit', 'matrix_to_density', 'measure_all', 'measure_partial', 'measure_partial_oneshot', 'measure_all_oneshot' ] #----------------------------------------------------------------------------- # Qubit Classes #----------------------------------------------------------------------------- class QubitState(State): """Base class for Qubit and QubitBra.""" #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # If we are passed a QubitState or subclass, we just take its qubit # values directly. if len(args) == 1 and isinstance(args[0], QubitState): return args[0].qubit_values # Turn strings into tuple of strings if len(args) == 1 and isinstance(args[0], str): args = tuple( S.Zero if qb == "0" else S.One for qb in args[0]) else: args = tuple( S.Zero if qb == "0" else S.One if qb == "1" else qb for qb in args) args = tuple(_sympify(arg) for arg in args) # Validate input (must have 0 or 1 input) for element in args: if element not in (S.Zero, S.One): raise ValueError( "Qubit values must be 0 or 1, got: %r" % element) return args @classmethod def _eval_hilbert_space(cls, args): return ComplexSpace(2)**len(args) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def dimension(self): """The number of Qubits in the state.""" return len(self.qubit_values) @property def nqubits(self): return self.dimension @property def qubit_values(self): """Returns the values of the qubits as a tuple.""" return self.label #------------------------------------------------------------------------- # Special methods #------------------------------------------------------------------------- def __len__(self): return self.dimension def __getitem__(self, bit): return self.qubit_values[int(self.dimension - bit - 1)] #------------------------------------------------------------------------- # Utility methods #------------------------------------------------------------------------- def flip(self, *bits): """Flip the bit(s) given.""" newargs = list(self.qubit_values) for i in bits: bit = int(self.dimension - i - 1) if newargs[bit] == 1: newargs[bit] = 0 else: newargs[bit] = 1 return self.__class__(*tuple(newargs)) class Qubit(QubitState, Ket): """A multi-qubit ket in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). Examples ======== Create a qubit in a couple of different ways and look at their attributes: >>> from sympy.physics.quantum.qubit import Qubit >>> Qubit(0,0,0) |000> >>> q = Qubit('0101') >>> q |0101> >>> q.nqubits 4 >>> len(q) 4 >>> q.dimension 4 >>> q.qubit_values (0, 1, 0, 1) We can flip the value of an individual qubit: >>> q.flip(1) |0111> We can take the dagger of a Qubit to get a bra: >>> from sympy.physics.quantum.dagger import Dagger >>> Dagger(q) <0101| >>> type(Dagger(q)) Inner products work as expected: >>> ip = Dagger(q)*q >>> ip <0101|0101> >>> ip.doit() 1 """ @classmethod def dual_class(self): return QubitBra def _eval_innerproduct_QubitBra(self, bra, **hints): if self.label == bra.label: return S.One else: return S.Zero def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): """Represent this qubits in the computational basis (ZGate). """ _format = options.get('format', 'sympy') n = 1 definite_state = 0 for it in reversed(self.qubit_values): definite_state += n*it n = n*2 result = [0]*(2**self.dimension) result[int(definite_state)] = 1 if _format == 'sympy': return Matrix(result) elif _format == 'numpy': import numpy as np return np.matrix(result, dtype='complex').transpose() elif _format == 'scipy.sparse': from scipy import sparse return sparse.csr_matrix(result, dtype='complex').transpose() def _eval_trace(self, bra, **kwargs): indices = kwargs.get('indices', []) #sort index list to begin trace from most-significant #qubit sorted_idx = list(indices) if len(sorted_idx) == 0: sorted_idx = list(range(0, self.nqubits)) sorted_idx.sort() #trace out for each of index new_mat = self*bra for i in range(len(sorted_idx) - 1, -1, -1): # start from tracing out from leftmost qubit new_mat = self._reduced_density(new_mat, int(sorted_idx[i])) if (len(sorted_idx) == self.nqubits): #in case full trace was requested return new_mat[0] else: return matrix_to_density(new_mat) def _reduced_density(self, matrix, qubit, **options): """Compute the reduced density matrix by tracing out one qubit. The qubit argument should be of type Python int, since it is used in bit operations """ def find_index_that_is_projected(j, k, qubit): bit_mask = 2**qubit - 1 return ((j >> qubit) << (1 + qubit)) + (j & bit_mask) + (k << qubit) old_matrix = represent(matrix, **options) old_size = old_matrix.cols #we expect the old_size to be even new_size = old_size//2 new_matrix = Matrix().zeros(new_size) for i in range(new_size): for j in range(new_size): for k in range(2): col = find_index_that_is_projected(j, k, qubit) row = find_index_that_is_projected(i, k, qubit) new_matrix[i, j] += old_matrix[row, col] return new_matrix class QubitBra(QubitState, Bra): """A multi-qubit bra in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). See also ======== Qubit: Examples using qubits """ @classmethod def dual_class(self): return Qubit class IntQubitState(QubitState): """A base class for qubits that work with binary representations.""" @classmethod def _eval_args(cls, args, nqubits=None): # The case of a QubitState instance if len(args) == 1 and isinstance(args[0], QubitState): return QubitState._eval_args(args) # otherwise, args should be integer elif not all(isinstance(a, (int, Integer)) for a in args): raise ValueError('values must be integers, got (%s)' % (tuple(type(a) for a in args),)) # use nqubits if specified if nqubits is not None: if not isinstance(nqubits, (int, Integer)): raise ValueError('nqubits must be an integer, got (%s)' % type(nqubits)) if len(args) != 1: raise ValueError( 'too many positional arguments (%s). should be (number, nqubits=n)' % (args,)) return cls._eval_args_with_nqubits(args[0], nqubits) # For a single argument, we construct the binary representation of # that integer with the minimal number of bits. if len(args) == 1 and args[0] > 1: #rvalues is the minimum number of bits needed to express the number rvalues = reversed(range(bitcount(abs(args[0])))) qubit_values = [(args[0] >> i) & 1 for i in rvalues] return QubitState._eval_args(qubit_values) # For two numbers, the second number is the number of bits # on which it is expressed, so IntQubit(0,5) == |00000>. elif len(args) == 2 and args[1] > 1: return cls._eval_args_with_nqubits(args[0], args[1]) else: return QubitState._eval_args(args) @classmethod def _eval_args_with_nqubits(cls, number, nqubits): need = bitcount(abs(number)) if nqubits < need: raise ValueError( 'cannot represent %s with %s bits' % (number, nqubits)) qubit_values = [(number >> i) & 1 for i in reversed(range(nqubits))] return QubitState._eval_args(qubit_values) def as_int(self): """Return the numerical value of the qubit.""" number = 0 n = 1 for i in reversed(self.qubit_values): number += n*i n = n << 1 return number def _print_label(self, printer, *args): return str(self.as_int()) def _print_label_pretty(self, printer, *args): label = self._print_label(printer, *args) return prettyForm(label) _print_label_repr = _print_label _print_label_latex = _print_label class IntQubit(IntQubitState, Qubit): """A qubit ket that store integers as binary numbers in qubit values. The differences between this class and ``Qubit`` are: * The form of the constructor. * The qubit values are printed as their corresponding integer, rather than the raw qubit values. The internal storage format of the qubit values in the same as ``Qubit``. Parameters ========== values : int, tuple If a single argument, the integer we want to represent in the qubit values. This integer will be represented using the fewest possible number of qubits. If a pair of integers and the second value is more than one, the first integer gives the integer to represent in binary form and the second integer gives the number of qubits to use. List of zeros and ones is also accepted to generate qubit by bit pattern. nqubits : int The integer that represents the number of qubits. This number should be passed with keyword ``nqubits=N``. You can use this in order to avoid ambiguity of Qubit-style tuple of bits. Please see the example below for more details. Examples ======== Create a qubit for the integer 5: >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qubit import Qubit >>> q = IntQubit(5) >>> q |5> We can also create an ``IntQubit`` by passing a ``Qubit`` instance. >>> q = IntQubit(Qubit('101')) >>> q |5> >>> q.as_int() 5 >>> q.nqubits 3 >>> q.qubit_values (1, 0, 1) We can go back to the regular qubit form. >>> Qubit(q) |101> Please note that ``IntQubit`` also accepts a ``Qubit``-style list of bits. So, the code below yields qubits 3, not a single bit ``1``. >>> IntQubit(1, 1) |3> To avoid ambiguity, use ``nqubits`` parameter. Use of this keyword is recommended especially when you provide the values by variables. >>> IntQubit(1, nqubits=1) |1> >>> a = 1 >>> IntQubit(a, nqubits=1) |1> """ @classmethod def dual_class(self): return IntQubitBra def _eval_innerproduct_IntQubitBra(self, bra, **hints): return Qubit._eval_innerproduct_QubitBra(self, bra) class IntQubitBra(IntQubitState, QubitBra): """A qubit bra that store integers as binary numbers in qubit values.""" @classmethod def dual_class(self): return IntQubit #----------------------------------------------------------------------------- # Qubit <---> Matrix conversion functions #----------------------------------------------------------------------------- def matrix_to_qubit(matrix): """Convert from the matrix repr. to a sum of Qubit objects. Parameters ---------- matrix : Matrix, numpy.matrix, scipy.sparse The matrix to build the Qubit representation of. This works with SymPy matrices, numpy matrices and scipy.sparse sparse matrices. Examples ======== Represent a state and then go back to its qubit form: >>> from sympy.physics.quantum.qubit import matrix_to_qubit, Qubit >>> from sympy.physics.quantum.represent import represent >>> q = Qubit('01') >>> matrix_to_qubit(represent(q)) |01> """ # Determine the format based on the type of the input matrix format = 'sympy' if isinstance(matrix, numpy_ndarray): format = 'numpy' if isinstance(matrix, scipy_sparse_matrix): format = 'scipy.sparse' # Make sure it is of correct dimensions for a Qubit-matrix representation. # This logic should work with sympy, numpy or scipy.sparse matrices. if matrix.shape[0] == 1: mlistlen = matrix.shape[1] nqubits = log(mlistlen, 2) ket = False cls = QubitBra elif matrix.shape[1] == 1: mlistlen = matrix.shape[0] nqubits = log(mlistlen, 2) ket = True cls = Qubit else: raise QuantumError( 'Matrix must be a row/column vector, got %r' % matrix ) if not isinstance(nqubits, Integer): raise QuantumError('Matrix must be a row/column vector of size ' '2**nqubits, got: %r' % matrix) # Go through each item in matrix, if element is non-zero, make it into a # Qubit item times the element. result = 0 for i in range(mlistlen): if ket: element = matrix[i, 0] else: element = matrix[0, i] if format in ('numpy', 'scipy.sparse'): element = complex(element) if element != 0.0: # Form Qubit array; 0 in bit-locations where i is 0, 1 in # bit-locations where i is 1 qubit_array = [int(i & (1 << x) != 0) for x in range(nqubits)] qubit_array.reverse() result = result + element*cls(*qubit_array) # If SymPy simplified by pulling out a constant coefficient, undo that. if isinstance(result, (Mul, Add, Pow)): result = result.expand() return result def matrix_to_density(mat): """ Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect>>> from sympy.physics.quantum.qubit import Qubit, measure_all >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_all(q) [(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)] """ m = qubit_to_matrix(qubit, format) if format == 'sympy': results = [] if normalize: m = m.normalized() size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size)/math.log(2)) for i in range(size): if m[i] != 0.0: results.append( (Qubit(IntQubit(i, nqubits=nqubits)), m[i]*conjugate(m[i])) ) return results else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial(qubit, bits, format='sympy', normalize=True): """Perform a partial ensemble measure on the specified qubits. Parameters ========== qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ======= result : list A list that consists of primitive states and their probabilities. Examples ======== >>> from sympy.physics.quantum.qubit import Qubit, measure_partial >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_partial(q, (0,)) [(sqrt(2)*|00>/2 + sqrt(2)*|10>/2, 1/2), (sqrt(2)*|01>/2 + sqrt(2)*|11>/2, 1/2)] """ m = qubit_to_matrix(qubit, format) if isinstance(bits, (SYMPY_INTS, Integer)): bits = (int(bits),) if format == 'sympy': if normalize: m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function. output = [] for outcome in possible_outcomes: # Calculate probability of finding the specified bits with # given values. prob_of_outcome = 0 prob_of_outcome += (outcome.H*outcome)[0] # If the output has a chance, append it to output with found # probability. if prob_of_outcome != 0: if normalize: next_matrix = matrix_to_qubit(outcome.normalized()) else: next_matrix = matrix_to_qubit(outcome) output.append(( next_matrix, prob_of_outcome )) return output else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial_oneshot(qubit, bits, format='sympy'): """Perform a partial oneshot measurement on the specified qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit, format) if format == 'sympy': m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function random_number = random.random() total_prob = 0 for outcome in possible_outcomes: # Calculate probability of finding the specified bits # with given values total_prob += (outcome.H*outcome)[0] if total_prob >= random_number: return matrix_to_qubit(outcome.normalized()) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def _get_possible_outcomes(m, bits): """Get the possible states that can be produced in a measurement. Parameters ---------- m : Matrix The matrix representing the state of the system. bits : tuple, list Which bits will be measured. Returns ------- result : list The list of possible states which can occur given this measurement. These are un-normalized so we can derive the probability of finding this state by taking the inner product with itself """ # This is filled with loads of dirty binary tricks...You have been warned size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size, 2) + .1) # Number of qubits possible # Make the output states and put in output_matrices, nothing in them now. # Each state will represent a possible outcome of the measurement # Thus, output_matrices[0] is the matrix which we get when all measured # bits return 0. and output_matrices[1] is the matrix for only the 0th # bit being true output_matrices = [] for i in range(1 << len(bits)): output_matrices.append(zeros(2**nqubits, 1)) # Bitmasks will help sort how to determine possible outcomes. # When the bit mask is and-ed with a matrix-index, # it will determine which state that index belongs to bit_masks = [] for bit in bits: bit_masks.append(1 << bit) # Make possible outcome states for i in range(2**nqubits): trueness = 0 # This tells us to which output_matrix this value belongs # Find trueness for j in range(len(bit_masks)): if i & bit_masks[j]: trueness += j + 1 # Put the value in the correct output matrix output_matrices[trueness][i] = m[i] return output_matrices def measure_all_oneshot(qubit, format='sympy'): """Perform a oneshot ensemble measurement on all qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit) if format == 'sympy': m = m.normalized() random_number = random.random() total = 0 result = 0 for i in m: total += i*i.conjugate() if total > random_number: break result += 1 return Qubit(IntQubit(result, int(math.log(max(m.shape), 2) + .1))) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" )