""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from typing import Dict as tDict import collections from functools import reduce from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices.dense import Matrix from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.core.expr import Expr from sympy.core.power import Pow class _QuantityMapper: _quantity_scale_factors_global = {} # type: tDict[Expr, Expr] _quantity_dimensional_equivalence_map_global = {} # type: tDict[Expr, Expr] _quantity_dimension_global = {} # type: tDict[Expr, Expr] def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, unit, dimension): from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[unit] = dimension def set_quantity_scale_factor(self, unit, scale_factor): from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[unit] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {'length': 1, 'time': -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {'length': 2} """ _op_priority = 13.0 # XXX: This doesn't seem to be used anywhere... _dimensional_dependencies = dict() # type: ignore is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, str): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, str): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) if symbol is not None: obj = Expr.__new__(cls, name, symbol) else: obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __hash__(self): return Expr.__hash__(self) def __eq__(self, other): if isinstance(other, Dimension): return self.name == other.name return False def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super().__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super().__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): return self*Pow(other, -1) def __rtruediv__(self, other): return other * pow(self, -1) @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( Dimension(d)**e for d, e in dependencies.items() ), 1) def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values()) # Create dimensions according to the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}): dimensional_dependencies = dict(dimensional_dependencies) def parse_dim(dim): if isinstance(dim, str): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: dim = dim.name if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim.name elif isinstance(dim, str): return Symbol(dim) elif isinstance(dim, Symbol): return dim else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim.name not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim.name] = Dict({dim.name: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, name): if isinstance(name, Dimension): name = name.name if isinstance(name, str): name = Symbol(name) if name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(name, {name: 1})) if name.is_number or name.is_NumberSymbol: return {} get_for_name = self._get_dimensional_dependencies_for_name if name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if name.is_Add: dicts = [get_for_name(i) for i in name.args] if all(d == dicts[0] for d in dicts[1:]): return dicts[0] raise TypeError("Only equivalent dimensions can be added or subtracted.") if name.is_Pow: dim_base = get_for_name(name.base) dim_exp = get_for_name(name.exp) if dim_exp == {} or name.exp.is_Symbol: return {k: v*name.exp for (k, v) in dim_base.items()} else: raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.") if name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in name.args) result = name.func(*args) dicts = [get_for_name(i) for i in name.args] if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == name.func: if isinstance(name, TrigonometricFunction): if dicts[0] in ({}, {Symbol('angle'): 1}): return {} else: raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(name.func)) else: if all( (item == {} for item in dicts) ): return {} else: raise TypeError("The input arguments for the function {} must be dimensionless.".format(name.func)) else: return get_for_name(result) raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(name))) def get_dimensional_dependencies(self, name, mark_dimensionless=False): dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {'dimensionless': 1} return {str(i): j for i, j in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None): deps = dict(self.dimensional_dependencies) if new_dim_deps: deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set() for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square