"""Implementation of :class:`FiniteField` class. """ from sympy.polys.domains.field import Field from sympy.polys.domains.modularinteger import ModularIntegerFactory from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public from sympy.polys.domains.groundtypes import SymPyInteger @public class FiniteField(Field, SimpleDomain): r"""Finite field of prime order :ref:`GF(p)` A :ref:`GF(p)` domain represents a `finite field`_ `\mathbb{F}_p` of prime order as :py:class:`~.Domain` in the domain system (see :ref:`polys-domainsintro`). A :py:class:`~.Poly` created from an expression with integer coefficients will have the domain :ref:`ZZ`. However, if the ``modulus=p`` option is given then the domain will be a finite field instead. >>> from sympy import Poly, Symbol >>> x = Symbol('x') >>> p = Poly(x**2 + 1) >>> p Poly(x**2 + 1, x, domain='ZZ') >>> p.domain ZZ >>> p2 = Poly(x**2 + 1, modulus=2) >>> p2 Poly(x**2 + 1, x, modulus=2) >>> p2.domain GF(2) It is possible to factorise a polynomial over :ref:`GF(p)` using the modulus argument to :py:func:`~.factor` or by specifying the domain explicitly. The domain can also be given as a string. >>> from sympy import factor, GF >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, domain=GF(2)) (x + 1)**2 >>> factor(x**2 + 1, domain='GF(2)') (x + 1)**2 It is also possible to use :ref:`GF(p)` with the :py:func:`~.cancel` and :py:func:`~.gcd` functions. >>> from sympy import cancel, gcd >>> cancel((x**2 + 1)/(x + 1)) (x**2 + 1)/(x + 1) >>> cancel((x**2 + 1)/(x + 1), domain=GF(2)) x + 1 >>> gcd(x**2 + 1, x + 1) 1 >>> gcd(x**2 + 1, x + 1, domain=GF(2)) x + 1 When using the domain directly :ref:`GF(p)` can be used as a constructor to create instances which then support the operations ``+,-,*,**,/`` >>> from sympy import GF >>> K = GF(5) >>> K GF(5) >>> x = K(3) >>> y = K(2) >>> x 3 mod 5 >>> y 2 mod 5 >>> x * y 1 mod 5 >>> x / y 4 mod 5 Notes ===== It is also possible to create a :ref:`GF(p)` domain of **non-prime** order but the resulting ring is **not** a field: it is just the ring of the integers modulo ``n``. >>> K = GF(9) >>> z = K(3) >>> z 3 mod 9 >>> z**2 0 mod 9 It would be good to have a proper implementation of prime power fields (``GF(p**n)``) but these are not yet implemented in SymPY. .. _finite field: https://en.wikipedia.org/wiki/Finite_field """ rep = 'FF' alias = 'FF' is_FiniteField = is_FF = True is_Numerical = True has_assoc_Ring = False has_assoc_Field = True dom = None mod = None def __init__(self, mod, symmetric=True): from sympy.polys.domains import ZZ dom = ZZ if mod <= 0: raise ValueError('modulus must be a positive integer, got %s' % mod) self.dtype = ModularIntegerFactory(mod, dom, symmetric, self) self.zero = self.dtype(0) self.one = self.dtype(1) self.dom = dom self.mod = mod def __str__(self): return 'GF(%s)' % self.mod def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.mod, self.dom)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, FiniteField) and \ self.mod == other.mod and self.dom == other.dom def characteristic(self): """Return the characteristic of this domain. """ return self.mod def get_field(self): """Returns a field associated with ``self``. """ return self def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyInteger(int(a)) def from_sympy(self, a): """Convert SymPy's Integer to SymPy's ``Integer``. """ if a.is_Integer: return self.dtype(self.dom.dtype(int(a))) elif a.is_Float and int(a) == a: return self.dtype(self.dom.dtype(int(a))) else: raise CoercionFailed("expected an integer, got %s" % a) def from_FF(K1, a, K0=None): """Convert ``ModularInteger(int)`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ(a.val, K0.dom)) def from_FF_python(K1, a, K0=None): """Convert ``ModularInteger(int)`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom)) def from_ZZ(K1, a, K0=None): """Convert Python's ``int`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_python(a, K0)) def from_ZZ_python(K1, a, K0=None): """Convert Python's ``int`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_python(a, K0)) def from_QQ(K1, a, K0=None): """Convert Python's ``Fraction`` to ``dtype``. """ if a.denominator == 1: return K1.from_ZZ_python(a.numerator) def from_QQ_python(K1, a, K0=None): """Convert Python's ``Fraction`` to ``dtype``. """ if a.denominator == 1: return K1.from_ZZ_python(a.numerator) def from_FF_gmpy(K1, a, K0=None): """Convert ``ModularInteger(mpz)`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom)) def from_ZZ_gmpy(K1, a, K0=None): """Convert GMPY's ``mpz`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0)) def from_QQ_gmpy(K1, a, K0=None): """Convert GMPY's ``mpq`` to ``dtype``. """ if a.denominator == 1: return K1.from_ZZ_gmpy(a.numerator) def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to ``dtype``. """ p, q = K0.to_rational(a) if q == 1: return K1.dtype(K1.dom.dtype(p)) FF = GF = FiniteField