"""Real and complex elements. """ from sympy.polys.domains.domainelement import DomainElement from sympy.utilities import public from mpmath.ctx_mp_python import PythonMPContext, _mpf, _mpc, _constant from mpmath.libmp import (MPZ_ONE, fzero, fone, finf, fninf, fnan, round_nearest, mpf_mul, repr_dps, int_types, from_int, from_float, from_str, to_rational) from mpmath.rational import mpq @public class RealElement(_mpf, DomainElement): """An element of a real domain. """ __slots__ = ('__mpf__',) def _set_mpf(self, val): self.__mpf__ = val _mpf_ = property(lambda self: self.__mpf__, _set_mpf) def parent(self): return self.context._parent @public class ComplexElement(_mpc, DomainElement): """An element of a complex domain. """ __slots__ = ('__mpc__',) def _set_mpc(self, val): self.__mpc__ = val _mpc_ = property(lambda self: self.__mpc__, _set_mpc) def parent(self): return self.context._parent new = object.__new__ @public class MPContext(PythonMPContext): def __init__(ctx, prec=53, dps=None, tol=None, real=False): ctx._prec_rounding = [prec, round_nearest] if dps is None: ctx._set_prec(prec) else: ctx._set_dps(dps) ctx.mpf = RealElement ctx.mpc = ComplexElement ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding] ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding] if real: ctx.mpf.context = ctx else: ctx.mpc.context = ctx ctx.constant = _constant ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding] ctx.constant.context = ctx ctx.types = [ctx.mpf, ctx.mpc, ctx.constant] ctx.trap_complex = True ctx.pretty = True if tol is None: ctx.tol = ctx._make_tol() elif tol is False: ctx.tol = fzero else: ctx.tol = ctx._convert_tol(tol) ctx.tolerance = ctx.make_mpf(ctx.tol) if not ctx.tolerance: ctx.max_denom = 1000000 else: ctx.max_denom = int(1/ctx.tolerance) ctx.zero = ctx.make_mpf(fzero) ctx.one = ctx.make_mpf(fone) ctx.j = ctx.make_mpc((fzero, fone)) ctx.inf = ctx.make_mpf(finf) ctx.ninf = ctx.make_mpf(fninf) ctx.nan = ctx.make_mpf(fnan) def _make_tol(ctx): hundred = (0, 25, 2, 5) eps = (0, MPZ_ONE, 1-ctx.prec, 1) return mpf_mul(hundred, eps) def make_tol(ctx): return ctx.make_mpf(ctx._make_tol()) def _convert_tol(ctx, tol): if isinstance(tol, int_types): return from_int(tol) if isinstance(tol, float): return from_float(tol) if hasattr(tol, "_mpf_"): return tol._mpf_ prec, rounding = ctx._prec_rounding if isinstance(tol, str): return from_str(tol, prec, rounding) raise ValueError("expected a real number, got %s" % tol) def _convert_fallback(ctx, x, strings): raise TypeError("cannot create mpf from " + repr(x)) @property def _repr_digits(ctx): return repr_dps(ctx._prec) @property def _str_digits(ctx): return ctx._dps def to_rational(ctx, s, limit=True): p, q = to_rational(s._mpf_) if not limit or q <= ctx.max_denom: return p, q p0, q0, p1, q1 = 0, 1, 1, 0 n, d = p, q while True: a = n//d q2 = q0 + a*q1 if q2 > ctx.max_denom: break p0, q0, p1, q1 = p1, q1, p0 + a*p1, q2 n, d = d, n - a*d k = (ctx.max_denom - q0)//q1 number = mpq(p, q) bound1 = mpq(p0 + k*p1, q0 + k*q1) bound2 = mpq(p1, q1) if not bound2 or not bound1: return p, q elif abs(bound2 - number) <= abs(bound1 - number): return bound2._mpq_ else: return bound1._mpq_ def almosteq(ctx, s, t, rel_eps=None, abs_eps=None): t = ctx.convert(t) if abs_eps is None and rel_eps is None: rel_eps = abs_eps = ctx.tolerance or ctx.make_tol() if abs_eps is None: abs_eps = ctx.convert(rel_eps) elif rel_eps is None: rel_eps = ctx.convert(abs_eps) diff = abs(s-t) if diff <= abs_eps: return True abss = abs(s) abst = abs(t) if abss < abst: err = diff/abst else: err = diff/abss return err <= rel_eps