"""Implementation of :class:`RationalField` class. """ from sympy.external.gmpy import MPQ from sympy.polys.domains.groundtypes import SymPyRational from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.field import Field from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public @public class RationalField(Field, CharacteristicZero, SimpleDomain): r"""Abstract base class for the domain :ref:`QQ`. The :py:class:`RationalField` class represents the field of rational numbers $\mathbb{Q}$ as a :py:class:`~.Domain` in the domain system. :py:class:`RationalField` is a superclass of :py:class:`PythonRationalField` and :py:class:`GMPYRationalField` one of which will be the implementation for :ref:`QQ` depending on whether either of ``gmpy`` or ``gmpy2`` is installed or not. See also ======== Domain """ rep = 'QQ' alias = 'QQ' is_RationalField = is_QQ = True is_Numerical = True has_assoc_Ring = True has_assoc_Field = True dtype = MPQ zero = dtype(0) one = dtype(1) tp = type(one) def __init__(self): pass def get_ring(self): """Returns ring associated with ``self``. """ from sympy.polys.domains import ZZ return ZZ def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyRational(int(a.numerator), int(a.denominator)) def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ if a.is_Rational: return MPQ(a.p, a.q) elif a.is_Float: from sympy.polys.domains import RR return MPQ(*map(int, RR.to_rational(a))) else: raise CoercionFailed("expected `Rational` object, got %s" % a) def algebraic_field(self, *extension): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. Parameters ========== *extension: One or more Expr Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`. Returns ======= :py:class:`~.AlgebraicField` A :py:class:`~.Domain` representing the algebraic field extension. Examples ======== >>> from sympy import QQ, sqrt >>> QQ.algebraic_field(sqrt(2)) QQ """ from sympy.polys.domains import AlgebraicField return AlgebraicField(self, *extension) def from_AlgebraicField(K1, a, K0): """Convert a :py:class:`~.ANP` object to :ref:`QQ`. See :py:meth:`~.Domain.convert` """ if a.is_ground: return K1.convert(a.LC(), K0.dom) def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return MPQ(a) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return MPQ(a) def from_QQ(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return MPQ(a.numerator, a.denominator) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return MPQ(a.numerator, a.denominator) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return MPQ(a) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return a def from_GaussianRationalField(K1, a, K0): """Convert a ``GaussianElement`` object to ``dtype``. """ if a.y == 0: return MPQ(a.x) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return MPQ(*map(int, K0.to_rational(a))) def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ return MPQ(a) / MPQ(b) def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__truediv__``. """ return MPQ(a) / MPQ(b) def rem(self, a, b): """Remainder of ``a`` and ``b``, implies nothing. """ return self.zero def div(self, a, b): """Division of ``a`` and ``b``, implies ``__truediv__``. """ return MPQ(a) / MPQ(b), self.zero def numer(self, a): """Returns numerator of ``a``. """ return a.numerator def denom(self, a): """Returns denominator of ``a``. """ return a.denominator QQ = RationalField()