"""Useful utilities for higher level polynomial classes. """ from sympy.core import (S, Add, Mul, Pow, Eq, Expr, expand_mul, expand_multinomial) from sympy.core.exprtools import decompose_power, decompose_power_rat from sympy.polys.polyerrors import PolynomialError, GeneratorsError from sympy.polys.polyoptions import build_options import re _gens_order = { 'a': 301, 'b': 302, 'c': 303, 'd': 304, 'e': 305, 'f': 306, 'g': 307, 'h': 308, 'i': 309, 'j': 310, 'k': 311, 'l': 312, 'm': 313, 'n': 314, 'o': 315, 'p': 216, 'q': 217, 'r': 218, 's': 219, 't': 220, 'u': 221, 'v': 222, 'w': 223, 'x': 124, 'y': 125, 'z': 126, } _max_order = 1000 _re_gen = re.compile(r"^(.*?)(\d*)$", re.MULTILINE) def _nsort(roots, separated=False): """Sort the numerical roots putting the real roots first, then sorting according to real and imaginary parts. If ``separated`` is True, then the real and imaginary roots will be returned in two lists, respectively. This routine tries to avoid issue 6137 by separating the roots into real and imaginary parts before evaluation. In addition, the sorting will raise an error if any computation cannot be done with precision. """ if not all(r.is_number for r in roots): raise NotImplementedError # see issue 6137: # get the real part of the evaluated real and imaginary parts of each root key = [[i.n(2).as_real_imag()[0] for i in r.as_real_imag()] for r in roots] # make sure the parts were computed with precision if len(roots) > 1 and any(i._prec == 1 for k in key for i in k): raise NotImplementedError("could not compute root with precision") # insert a key to indicate if the root has an imaginary part key = [(1 if i else 0, r, i) for r, i in key] key = sorted(zip(key, roots)) # return the real and imaginary roots separately if desired if separated: r = [] i = [] for (im, _, _), v in key: if im: i.append(v) else: r.append(v) return r, i _, roots = zip(*key) return list(roots) def _sort_gens(gens, **args): """Sort generators in a reasonably intelligent way. """ opt = build_options(args) gens_order, wrt = {}, None if opt is not None: gens_order, wrt = {}, opt.wrt for i, gen in enumerate(opt.sort): gens_order[gen] = i + 1 def order_key(gen): gen = str(gen) if wrt is not None: try: return (-len(wrt) + wrt.index(gen), gen, 0) except ValueError: pass name, index = _re_gen.match(gen).groups() if index: index = int(index) else: index = 0 try: return ( gens_order[name], name, index) except KeyError: pass try: return (_gens_order[name], name, index) except KeyError: pass return (_max_order, name, index) try: gens = sorted(gens, key=order_key) except TypeError: # pragma: no cover pass return tuple(gens) def _unify_gens(f_gens, g_gens): """Unify generators in a reasonably intelligent way. """ f_gens = list(f_gens) g_gens = list(g_gens) if f_gens == g_gens: return tuple(f_gens) gens, common, k = [], [], 0 for gen in f_gens: if gen in g_gens: common.append(gen) for i, gen in enumerate(g_gens): if gen in common: g_gens[i], k = common[k], k + 1 for gen in common: i = f_gens.index(gen) gens.extend(f_gens[:i]) f_gens = f_gens[i + 1:] i = g_gens.index(gen) gens.extend(g_gens[:i]) g_gens = g_gens[i + 1:] gens.append(gen) gens.extend(f_gens) gens.extend(g_gens) return tuple(gens) def _analyze_gens(gens): """Support for passing generators as `*gens` and `[gens]`. """ if len(gens) == 1 and hasattr(gens[0], '__iter__'): return tuple(gens[0]) else: return tuple(gens) def _sort_factors(factors, **args): """Sort low-level factors in increasing 'complexity' order. """ def order_if_multiple_key(factor): (f, n) = factor return (len(f), n, f) def order_no_multiple_key(f): return (len(f), f) if args.get('multiple', True): return sorted(factors, key=order_if_multiple_key) else: return sorted(factors, key=order_no_multiple_key) illegal = [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity] illegal_types = [type(obj) for obj in illegal] finf = [float(i) for i in illegal[1:3]] def _not_a_coeff(expr): """Do not treat NaN and infinities as valid polynomial coefficients. """ if type(expr) in illegal_types or expr in finf: return True if isinstance(expr, float) and float(expr) != expr: return True # nan return # could be def _parallel_dict_from_expr_if_gens(exprs, opt): """Transform expressions into a multinomial form given generators. """ k, indices = len(opt.gens), {} for i, g in enumerate(opt.gens): indices[g] = i polys = [] for expr in exprs: poly = {} if expr.is_Equality: expr = expr.lhs - expr.rhs for term in Add.make_args(expr): coeff, monom = [], [0]*k for factor in Mul.make_args(term): if not _not_a_coeff(factor) and factor.is_Number: coeff.append(factor) else: try: if opt.series is False: base, exp = decompose_power(factor) if exp < 0: exp, base = -exp, Pow(base, -S.One) else: base, exp = decompose_power_rat(factor) monom[indices[base]] = exp except KeyError: if not factor.has_free(*opt.gens): coeff.append(factor) else: raise PolynomialError("%s contains an element of " "the set of generators." % factor) monom = tuple(monom) if monom in poly: poly[monom] += Mul(*coeff) else: poly[monom] = Mul(*coeff) polys.append(poly) return polys, opt.gens def _parallel_dict_from_expr_no_gens(exprs, opt): """Transform expressions into a multinomial form and figure out generators. """ if opt.domain is not None: def _is_coeff(factor): return factor in opt.domain elif opt.extension is True: def _is_coeff(factor): return factor.is_algebraic elif opt.greedy is not False: def _is_coeff(factor): return factor is S.ImaginaryUnit else: def _is_coeff(factor): return factor.is_number gens, reprs = set(), [] for expr in exprs: terms = [] if expr.is_Equality: expr = expr.lhs - expr.rhs for term in Add.make_args(expr): coeff, elements = [], {} for factor in Mul.make_args(term): if not _not_a_coeff(factor) and (factor.is_Number or _is_coeff(factor)): coeff.append(factor) else: if opt.series is False: base, exp = decompose_power(factor) if exp < 0: exp, base = -exp, Pow(base, -S.One) else: base, exp = decompose_power_rat(factor) elements[base] = elements.setdefault(base, 0) + exp gens.add(base) terms.append((coeff, elements)) reprs.append(terms) gens = _sort_gens(gens, opt=opt) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i polys = [] for terms in reprs: poly = {} for coeff, term in terms: monom = [0]*k for base, exp in term.items(): monom[indices[base]] = exp monom = tuple(monom) if monom in poly: poly[monom] += Mul(*coeff) else: poly[monom] = Mul(*coeff) polys.append(poly) return polys, tuple(gens) def _dict_from_expr_if_gens(expr, opt): """Transform an expression into a multinomial form given generators. """ (poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt) return poly, gens def _dict_from_expr_no_gens(expr, opt): """Transform an expression into a multinomial form and figure out generators. """ (poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt) return poly, gens def parallel_dict_from_expr(exprs, **args): """Transform expressions into a multinomial form. """ reps, opt = _parallel_dict_from_expr(exprs, build_options(args)) return reps, opt.gens def _parallel_dict_from_expr(exprs, opt): """Transform expressions into a multinomial form. """ if opt.expand is not False: exprs = [ expr.expand() for expr in exprs ] if any(expr.is_commutative is False for expr in exprs): raise PolynomialError('non-commutative expressions are not supported') if opt.gens: reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt) else: reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt) return reps, opt.clone({'gens': gens}) def dict_from_expr(expr, **args): """Transform an expression into a multinomial form. """ rep, opt = _dict_from_expr(expr, build_options(args)) return rep, opt.gens def _dict_from_expr(expr, opt): """Transform an expression into a multinomial form. """ if expr.is_commutative is False: raise PolynomialError('non-commutative expressions are not supported') def _is_expandable_pow(expr): return (expr.is_Pow and expr.exp.is_positive and expr.exp.is_Integer and expr.base.is_Add) if opt.expand is not False: if not isinstance(expr, (Expr, Eq)): raise PolynomialError('expression must be of type Expr') expr = expr.expand() # TODO: Integrate this into expand() itself while any(_is_expandable_pow(i) or i.is_Mul and any(_is_expandable_pow(j) for j in i.args) for i in Add.make_args(expr)): expr = expand_multinomial(expr) while any(i.is_Mul and any(j.is_Add for j in i.args) for i in Add.make_args(expr)): expr = expand_mul(expr) if opt.gens: rep, gens = _dict_from_expr_if_gens(expr, opt) else: rep, gens = _dict_from_expr_no_gens(expr, opt) return rep, opt.clone({'gens': gens}) def expr_from_dict(rep, *gens): """Convert a multinomial form into an expression. """ result = [] for monom, coeff in rep.items(): term = [coeff] for g, m in zip(gens, monom): if m: term.append(Pow(g, m)) result.append(Mul(*term)) return Add(*result) parallel_dict_from_basic = parallel_dict_from_expr dict_from_basic = dict_from_expr basic_from_dict = expr_from_dict def _dict_reorder(rep, gens, new_gens): """Reorder levels using dict representation. """ gens = list(gens) monoms = rep.keys() coeffs = rep.values() new_monoms = [ [] for _ in range(len(rep)) ] used_indices = set() for gen in new_gens: try: j = gens.index(gen) used_indices.add(j) for M, new_M in zip(monoms, new_monoms): new_M.append(M[j]) except ValueError: for new_M in new_monoms: new_M.append(0) for i, _ in enumerate(gens): if i not in used_indices: for monom in monoms: if monom[i]: raise GeneratorsError("unable to drop generators") return map(tuple, new_monoms), coeffs class PicklableWithSlots: """ Mixin class that allows to pickle objects with ``__slots__``. Examples ======== First define a class that mixes :class:`PicklableWithSlots` in:: >>> from sympy.polys.polyutils import PicklableWithSlots >>> class Some(PicklableWithSlots): ... __slots__ = ('foo', 'bar') ... ... def __init__(self, foo, bar): ... self.foo = foo ... self.bar = bar To make :mod:`pickle` happy in doctest we have to use these hacks:: >>> import builtins >>> builtins.Some = Some >>> from sympy.polys import polyutils >>> polyutils.Some = Some Next lets see if we can create an instance, pickle it and unpickle:: >>> some = Some('abc', 10) >>> some.foo, some.bar ('abc', 10) >>> from pickle import dumps, loads >>> some2 = loads(dumps(some)) >>> some2.foo, some2.bar ('abc', 10) """ __slots__ = () def __getstate__(self, cls=None): if cls is None: # This is the case for the instance that gets pickled cls = self.__class__ d = {} # Get all data that should be stored from super classes for c in cls.__bases__: if hasattr(c, "__getstate__"): d.update(c.__getstate__(self, c)) # Get all information that should be stored from cls and return the dict for name in cls.__slots__: if hasattr(self, name): d[name] = getattr(self, name) return d def __setstate__(self, d): # All values that were pickled are now assigned to a fresh instance for name, value in d.items(): try: setattr(self, name, value) except AttributeError: # This is needed in cases like Rational :> Half pass class IntegerPowerable: r""" Mixin class for classes that define a `__mul__` method, and want to be raised to integer powers in the natural way that follows. Implements powering via binary expansion, for efficiency. By default, only integer powers $\geq 2$ are supported. To support the first, zeroth, or negative powers, override the corresponding methods, `_first_power`, `_zeroth_power`, `_negative_power`, below. """ def __pow__(self, e, modulo=None): if e < 2: try: if e == 1: return self._first_power() elif e == 0: return self._zeroth_power() else: return self._negative_power(e, modulo=modulo) except NotImplementedError: return NotImplemented else: bits = [int(d) for d in reversed(bin(e)[2:])] n = len(bits) p = self first = True for i in range(n): if bits[i]: if first: r = p first = False else: r *= p if modulo is not None: r %= modulo if i < n - 1: p *= p if modulo is not None: p %= modulo return r def _negative_power(self, e, modulo=None): """ Compute inverse of self, then raise that to the abs(e) power. For example, if the class has an `inv()` method, return self.inv() ** abs(e) % modulo """ raise NotImplementedError def _zeroth_power(self): """Return unity element of algebraic struct to which self belongs.""" raise NotImplementedError def _first_power(self): """Return a copy of self.""" raise NotImplementedError