"""Formal Power Series""" from collections import defaultdict from sympy.core.numbers import (nan, oo, zoo) from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import Derivative, Function, expand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.relational import Eq from sympy.sets.sets import Interval from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy, symbols, Symbol from sympy.core.sympify import sympify from sympy.discrete.convolutions import convolution from sympy.functions.combinatorial.factorials import binomial, factorial, rf from sympy.functions.combinatorial.numbers import bell from sympy.functions.elementary.integers import floor, frac, ceiling from sympy.functions.elementary.miscellaneous import Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.series.limits import Limit from sympy.series.order import Order from sympy.simplify.powsimp import powsimp from sympy.series.sequences import sequence from sympy.series.series_class import SeriesBase from sympy.utilities.iterables import iterable def rational_algorithm(f, x, k, order=4, full=False): """ Rational algorithm for computing formula of coefficients of Formal Power Series of a function. Explanation =========== Applicable when f(x) or some derivative of f(x) is a rational function in x. :func:`rational_algorithm` uses :func:`~.apart` function for partial fraction decomposition. :func:`~.apart` by default uses 'undetermined coefficients method'. By setting ``full=True``, 'Bronstein's algorithm' can be used instead. Looks for derivative of a function up to 4'th order (by default). This can be overridden using order option. Parameters ========== x : Symbol order : int, optional Order of the derivative of ``f``, Default is 4. full : bool Returns ======= formula : Expr ind : Expr Independent terms. order : int full : bool Examples ======== >>> from sympy import log, atan >>> from sympy.series.formal import rational_algorithm as ra >>> from sympy.abc import x, k >>> ra(1 / (1 - x), x, k) (1, 0, 0) >>> ra(log(1 + x), x, k) (-1/((-1)**k*k), 0, 1) >>> ra(atan(x), x, k, full=True) ((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1) Notes ===== By setting ``full=True``, range of admissible functions to be solved using ``rational_algorithm`` can be increased. This option should be used carefully as it can significantly slow down the computation as ``doit`` is performed on the :class:`~.RootSum` object returned by the :func:`~.apart` function. Use ``full=False`` whenever possible. See Also ======== sympy.polys.partfrac.apart References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ from sympy.polys import RootSum, apart from sympy.integrals import integrate diff = f ds = [] # list of diff for i in range(order + 1): if i: diff = diff.diff(x) if diff.is_rational_function(x): coeff, sep = S.Zero, S.Zero terms = apart(diff, x, full=full) if terms.has(RootSum): terms = terms.doit() for t in Add.make_args(terms): num, den = t.as_numer_denom() if not den.has(x): sep += t else: if isinstance(den, Mul): # m*(n*x - a)**j -> (n*x - a)**j ind = den.as_independent(x) den = ind[1] num /= ind[0] # (n*x - a)**j -> (x - b) den, j = den.as_base_exp() a, xterm = den.as_coeff_add(x) # term -> m/x**n if not a: sep += t continue xc = xterm[0].coeff(x) a /= -xc num /= xc**j ak = ((-1)**j * num * binomial(j + k - 1, k).rewrite(factorial) / a**(j + k)) coeff += ak # Hacky, better way? if coeff.is_zero: return None if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or coeff.has(nan)): return None for j in range(i): coeff = (coeff / (k + j + 1)) sep = integrate(sep, x) sep += (ds.pop() - sep).limit(x, 0) # constant of integration return (coeff.subs(k, k - i), sep, i) else: ds.append(diff) return None def rational_independent(terms, x): """ Returns a list of all the rationally independent terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.series.formal import rational_independent >>> from sympy.abc import x >>> rational_independent([cos(x), sin(x)], x) [cos(x), sin(x)] >>> rational_independent([x**2, sin(x), x*sin(x), x**3], x) [x**3 + x**2, x*sin(x) + sin(x)] """ if not terms: return [] ind = terms[0:1] for t in terms[1:]: n = t.as_independent(x)[1] for i, term in enumerate(ind): d = term.as_independent(x)[1] q = (n / d).cancel() if q.is_rational_function(x): ind[i] += t break else: ind.append(t) return ind def simpleDE(f, x, g, order=4): r""" Generates simple DE. Explanation =========== DE is of the form .. math:: f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0 where :math:`A_j` should be rational function in x. Generates DE's upto order 4 (default). DE's can also have free parameters. By increasing order, higher order DE's can be found. Yields a tuple of (DE, order). """ from sympy.solvers.solveset import linsolve a = symbols('a:%d' % (order)) def _makeDE(k): eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)]) DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)]) return eq, DE found = False for k in range(1, order + 1): eq, DE = _makeDE(k) eq = eq.expand() terms = eq.as_ordered_terms() ind = rational_independent(terms, x) if found or len(ind) == k: sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s))) if sol: found = True DE = DE.subs(sol) DE = DE.as_numer_denom()[0] DE = DE.factor().as_coeff_mul(Derivative)[1][0] yield DE.collect(Derivative(g(x))), k def exp_re(DE, r, k): """Converts a DE with constant coefficients (explike) into a RE. Explanation =========== Performs the substitution: .. math:: f^j(x) \\to r(k + j) Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import exp_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> exp_re(-f(x) + Derivative(f(x)), r, k) -r(k) + r(k + 1) >>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k) r(k) + r(k + 1) See Also ======== sympy.series.formal.hyper_re """ RE = S.Zero g = DE.atoms(Function).pop() mini = None for t in Add.make_args(DE): coeff, d = t.as_independent(g) if isinstance(d, Derivative): j = d.derivative_count else: j = 0 if mini is None or j < mini: mini = j RE += coeff * r(k + j) if mini: RE = RE.subs(k, k - mini) return RE def hyper_re(DE, r, k): """ Converts a DE into a RE. Explanation =========== Performs the substitution: .. math:: x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l} Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import hyper_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> hyper_re(-f(x) + Derivative(f(x)), r, k) (k + 1)*r(k + 1) - r(k) >>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k) (k + 2)*(k + 3)*r(k + 3) - r(k) See Also ======== sympy.series.formal.exp_re """ RE = S.Zero g = DE.atoms(Function).pop() x = g.atoms(Symbol).pop() mini = None for t in Add.make_args(DE.expand()): coeff, d = t.as_independent(g) c, v = coeff.as_independent(x) l = v.as_coeff_exponent(x)[1] if isinstance(d, Derivative): j = d.derivative_count else: j = 0 RE += c * rf(k + 1 - l, j) * r(k + j - l) if mini is None or j - l < mini: mini = j - l RE = RE.subs(k, k - mini) m = Wild('m') return RE.collect(r(k + m)) def _transformation_a(f, x, P, Q, k, m, shift): f *= x**(-shift) P = P.subs(k, k + shift) Q = Q.subs(k, k + shift) return f, P, Q, m def _transformation_c(f, x, P, Q, k, m, scale): f = f.subs(x, x**scale) P = P.subs(k, k / scale) Q = Q.subs(k, k / scale) m *= scale return f, P, Q, m def _transformation_e(f, x, P, Q, k, m): f = f.diff(x) P = P.subs(k, k + 1) * (k + m + 1) Q = Q.subs(k, k + 1) * (k + 1) return f, P, Q, m def _apply_shift(sol, shift): return [(res, cond + shift) for res, cond in sol] def _apply_scale(sol, scale): return [(res, cond / scale) for res, cond in sol] def _apply_integrate(sol, x, k): return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1) for res, cond in sol] def _compute_formula(f, x, P, Q, k, m, k_max): """Computes the formula for f.""" from sympy.polys import roots sol = [] for i in range(k_max + 1, k_max + m + 1): if (i < 0) == True: continue r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_zero: continue kterm = m*k + i res = r p = P.subs(k, kterm) q = Q.subs(k, kterm) c1 = p.subs(k, 1/k).leadterm(k)[0] c2 = q.subs(k, 1/k).leadterm(k)[0] res *= (-c1 / c2)**k for r, mul in roots(p, k).items(): res *= rf(-r, k)**mul for r, mul in roots(q, k).items(): res /= rf(-r, k)**mul sol.append((res, kterm)) return sol def _rsolve_hypergeometric(f, x, P, Q, k, m): """ Recursive wrapper to rsolve_hypergeometric. Explanation =========== Returns a Tuple of (formula, series independent terms, maximum power of x in independent terms) if successful otherwise ``None``. See :func:`rsolve_hypergeometric` for details. """ from sympy.polys import lcm, roots from sympy.integrals import integrate # transformation - c proots, qroots = roots(P, k), roots(Q, k) all_roots = dict(proots) all_roots.update(qroots) scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items() if r.is_rational]) f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale) # transformation - a qroots = roots(Q, k) if qroots: k_min = Min(*qroots.keys()) else: k_min = S.Zero shift = k_min + m f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift) l = (x*f).limit(x, 0) if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0 return None qroots = roots(Q, k) if qroots: k_max = Max(*qroots.keys()) else: k_max = S.Zero ind, mp = S.Zero, -oo for i in range(k_max + m + 1): r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_finite is False: old_f = f f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i) f, P, Q, m = _transformation_e(f, x, P, Q, k, m) sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m) sol = _apply_integrate(sol, x, k) sol = _apply_shift(sol, i) ind = integrate(ind, x) ind += (old_f - ind).limit(x, 0) # constant of integration mp += 1 return sol, ind, mp elif r: ind += r*x**(i + shift) pow_x = Rational((i + shift), scale) if pow_x > mp: mp = pow_x # maximum power of x ind = ind.subs(x, x**(1/scale)) sol = _compute_formula(f, x, P, Q, k, m, k_max) sol = _apply_shift(sol, shift) sol = _apply_scale(sol, scale) return sol, ind, mp def rsolve_hypergeometric(f, x, P, Q, k, m): """ Solves RE of hypergeometric type. Explanation =========== Attempts to solve RE of the form Q(k)*a(k + m) - P(k)*a(k) Transformations that preserve Hypergeometric type: a. x**n*f(x): b(k + m) = R(k - n)*b(k) b. f(A*x): b(k + m) = A**m*R(k)*b(k) c. f(x**n): b(k + n*m) = R(k/n)*b(k) d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k) e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k) Some of these transformations have been used to solve the RE. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import exp, ln, S >>> from sympy.series.formal import rsolve_hypergeometric as rh >>> from sympy.abc import x, k >>> rh(exp(x), x, -S.One, (k + 1), k, 1) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ result = _rsolve_hypergeometric(f, x, P, Q, k, m) if result is None: return None sol_list, ind, mp = result sol_dict = defaultdict(lambda: S.Zero) for res, cond in sol_list: j, mk = cond.as_coeff_Add() c = mk.coeff(k) if j.is_integer is False: res *= x**frac(j) j = floor(j) res = res.subs(k, (k - j) / c) cond = Eq(k % c, j % c) sol_dict[cond] += res # Group together formula for same conditions sol = [] for cond, res in sol_dict.items(): sol.append((res, cond)) sol.append((S.Zero, True)) sol = Piecewise(*sol) if mp is -oo: s = S.Zero elif mp.is_integer is False: s = ceiling(mp) else: s = mp + 1 # save all the terms of # form 1/x**k in ind if s < 0: ind += sum(sequence(sol * x**k, (k, s, -1))) s = S.Zero return (sol, ind, s) def _solve_hyper_RE(f, x, RE, g, k): """See docstring of :func:`rsolve_hypergeometric` for details.""" terms = Add.make_args(RE) if len(terms) == 2: gs = list(RE.atoms(Function)) P, Q = map(RE.coeff, gs) m = gs[1].args[0] - gs[0].args[0] if m < 0: P, Q = Q, P m = abs(m) return rsolve_hypergeometric(f, x, P, Q, k, m) def _solve_explike_DE(f, x, DE, g, k): """Solves DE with constant coefficients.""" from sympy.solvers import rsolve for t in Add.make_args(DE): coeff, d = t.as_independent(g) if coeff.free_symbols: return RE = exp_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) sol = rsolve(RE, g(k), init) if sol: return (sol / factorial(k), S.Zero, S.Zero) def _solve_simple(f, x, DE, g, k): """Converts DE into RE and solves using :func:`rsolve`.""" from sympy.solvers import rsolve RE = hyper_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i) sol = rsolve(RE, g(k), init) if sol: return (sol, S.Zero, S.Zero) def _transform_explike_DE(DE, g, x, order, syms): """Converts DE with free parameters into DE with constant coefficients.""" from sympy.solvers.solveset import linsolve eq = [] highest_coeff = DE.coeff(Derivative(g(x), x, order)) for i in range(order): coeff = DE.coeff(Derivative(g(x), x, i)) coeff = (coeff / highest_coeff).expand().collect(x) for t in Add.make_args(coeff): eq.append(t) temp = [] for e in eq: if e.has(x): break elif e.has(Symbol): temp.append(e) else: eq = temp if eq: sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: DE = DE.subs(sol) DE = DE.factor().as_coeff_mul(Derivative)[1][0] DE = DE.collect(Derivative(g(x))) return DE def _transform_DE_RE(DE, g, k, order, syms): """Converts DE with free parameters into RE of hypergeometric type.""" from sympy.solvers.solveset import linsolve RE = hyper_re(DE, g, k) eq = [] for i in range(1, order): coeff = RE.coeff(g(k + i)) eq.append(coeff) sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: m = Wild('m') RE = RE.subs(sol) RE = RE.factor().as_numer_denom()[0].collect(g(k + m)) RE = RE.as_coeff_mul(g)[1][0] for i in range(order): # smallest order should be g(k) if RE.coeff(g(k + i)) and i: RE = RE.subs(k, k - i) break return RE def solve_de(f, x, DE, order, g, k): """ Solves the DE. Explanation =========== Tries to solve DE by either converting into a RE containing two terms or converting into a DE having constant coefficients. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import Derivative as D, Function >>> from sympy import exp, ln >>> from sympy.series.formal import solve_de >>> from sympy.abc import x, k >>> f = Function('f') >>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) """ sol = None syms = DE.free_symbols.difference({g, x}) if syms: RE = _transform_DE_RE(DE, g, k, order, syms) else: RE = hyper_re(DE, g, k) if not RE.free_symbols.difference({k}): sol = _solve_hyper_RE(f, x, RE, g, k) if sol: return sol if syms: DE = _transform_explike_DE(DE, g, x, order, syms) if not DE.free_symbols.difference({x}): sol = _solve_explike_DE(f, x, DE, g, k) if sol: return sol def hyper_algorithm(f, x, k, order=4): """ Hypergeometric algorithm for computing Formal Power Series. Explanation =========== Steps: * Generates DE * Convert the DE into RE * Solves the RE Examples ======== >>> from sympy import exp, ln >>> from sympy.series.formal import hyper_algorithm >>> from sympy.abc import x, k >>> hyper_algorithm(exp(x), x, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> hyper_algorithm(ln(1 + x), x, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) See Also ======== sympy.series.formal.simpleDE sympy.series.formal.solve_de """ g = Function('g') des = [] # list of DE's sol = None for DE, i in simpleDE(f, x, g, order): if DE is not None: sol = solve_de(f, x, DE, i, g, k) if sol: return sol if not DE.free_symbols.difference({x}): des.append(DE) # If nothing works # Try plain rsolve for DE in des: sol = _solve_simple(f, x, DE, g, k) if sol: return sol def _compute_fps(f, x, x0, dir, hyper, order, rational, full): """Recursive wrapper to compute fps. See :func:`compute_fps` for details. """ if x0 in [S.Infinity, S.NegativeInfinity]: dir = S.One if x0 is S.Infinity else -S.One temp = f.subs(x, 1/x) result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x)) elif x0 or dir == -S.One: if dir == -S.One: rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 temp = f.subs(x, rep) result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, rep2 + rep2b), result[2].subs(x, rep2 + rep2b)) if f.is_polynomial(x): k = Dummy('k') ak = sequence(Coeff(f, x, k), (k, 1, oo)) xk = sequence(x**k, (k, 0, oo)) ind = f.coeff(x, 0) return ak, xk, ind # Break instances of Add # this allows application of different # algorithms on different terms increasing the # range of admissible functions. if isinstance(f, Add): result = False ak = sequence(S.Zero, (0, oo)) ind, xk = S.Zero, None for t in Add.make_args(f): res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full) if res: if not result: result = True xk = res[1] if res[0].start > ak.start: seq = ak s, f = ak.start, res[0].start else: seq = res[0] s, f = res[0].start, ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])]) ak += res[0] ind += res[2] + save else: ind += t if result: return ak, xk, ind return None # The symbolic term - symb, if present, is being separated from the function # Otherwise symb is being set to S.One syms = f.free_symbols.difference({x}) (f, symb) = expand(f).as_independent(*syms) if symb.is_zero: symb = S.One symb = powsimp(symb) result = None # from here on it's x0=0 and dir=1 handling k = Dummy('k') if rational: result = rational_algorithm(f, x, k, order, full) if result is None and hyper: result = hyper_algorithm(f, x, k, order) if result is None: return None ak = sequence(result[0], (k, result[2], oo)) xk_formula = powsimp(x**k * symb) xk = sequence(xk_formula, (k, 0, oo)) ind = powsimp(result[1] * symb) return ak, xk, ind def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Computes the formula for Formal Power Series of a function. Explanation =========== Tries to compute the formula by applying the following techniques (in order): * rational_algorithm * Hypergeometric algorithm Parameters ========== x : Symbol x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Returns ======= ak : sequence Sequence of coefficients. xk : sequence Sequence of powers of x. ind : Expr Independent terms. mul : Pow Common terms. See Also ======== sympy.series.formal.rational_algorithm sympy.series.formal.hyper_algorithm """ f = sympify(f) x = sympify(x) if not f.has(x): return None x0 = sympify(x0) if dir == '+': dir = S.One elif dir == '-': dir = -S.One elif dir not in [S.One, -S.One]: raise ValueError("Dir must be '+' or '-'") else: dir = sympify(dir) return _compute_fps(f, x, x0, dir, hyper, order, rational, full) class Coeff(Function): """ Coeff(p, x, n) represents the nth coefficient of the polynomial p in x """ @classmethod def eval(cls, p, x, n): if p.is_polynomial(x) and n.is_integer: return p.coeff(x, n) class FormalPowerSeries(SeriesBase): """ Represents Formal Power Series of a function. Explanation =========== No computation is performed. This class should only to be used to represent a series. No checks are performed. For computing a series use :func:`fps`. See Also ======== sympy.series.formal.fps """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) def __init__(self, *args): ak = args[4][0] k = ak.variables[0] self.ak_seq = sequence(ak.formula, (k, 1, oo)) self.fact_seq = sequence(factorial(k), (k, 1, oo)) self.bell_coeff_seq = self.ak_seq * self.fact_seq self.sign_seq = sequence((-1, 1), (k, 1, oo)) @property def function(self): return self.args[0] @property def x(self): return self.args[1] @property def x0(self): return self.args[2] @property def dir(self): return self.args[3] @property def ak(self): return self.args[4][0] @property def xk(self): return self.args[4][1] @property def ind(self): return self.args[4][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo @property def infinite(self): """Returns an infinite representation of the series""" from sympy.concrete import Sum ak, xk = self.ak, self.xk k = ak.variables[0] inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop)) return self.ind + inf_sum def _get_pow_x(self, term): """Returns the power of x in a term.""" xterm, pow_x = term.as_independent(self.x)[1].as_base_exp() if not xterm.has(self.x): return S.Zero return pow_x def polynomial(self, n=6): """ Truncated series as polynomial. Explanation =========== Returns series expansion of ``f`` upto order ``O(x**n)`` as a polynomial(without ``O`` term). """ terms = [] sym = self.free_symbols for i, t in enumerate(self): xp = self._get_pow_x(t) if xp.has(*sym): xp = xp.as_coeff_add(*sym)[0] if xp >= n: break elif xp.is_integer is True and i == n + 1: break elif t is not S.Zero: terms.append(t) return Add(*terms) def truncate(self, n=6): """ Truncated series. Explanation =========== Returns truncated series expansion of f upto order ``O(x**n)``. If n is ``None``, returns an infinite iterator. """ if n is None: return iter(self) x, x0 = self.x, self.x0 pt_xk = self.xk.coeff(n) if x0 is S.NegativeInfinity: x0 = S.Infinity return self.polynomial(n) + Order(pt_xk, (x, x0)) def zero_coeff(self): return self._eval_term(0) def _eval_term(self, pt): try: pt_xk = self.xk.coeff(pt) pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients except IndexError: term = S.Zero else: term = (pt_ak * pt_xk) if self.ind: ind = S.Zero sym = self.free_symbols for t in Add.make_args(self.ind): pow_x = self._get_pow_x(t) if pow_x.has(*sym): pow_x = pow_x.as_coeff_add(*sym)[0] if pt == 0 and pow_x < 1: ind += t elif pow_x >= pt and pow_x < pt + 1: ind += t term += ind return term.collect(self.x) def _eval_subs(self, old, new): x = self.x if old.has(x): return self def _eval_as_leading_term(self, x, logx=None, cdir=0): for t in self: if t is not S.Zero: return t def _eval_derivative(self, x): f = self.function.diff(x) ind = self.ind.diff(x) pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t * (pow_xk + pow_x) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop)) else: ak = sequence((ak.formula * pow_xk).subs(k, k + 1), (k, ak.start - 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def integrate(self, x=None, **kwargs): """ Integrate Formal Power Series. Examples ======== >>> from sympy import fps, sin, integrate >>> from sympy.abc import x >>> f = fps(sin(x)) >>> f.integrate(x).truncate() -1 + x**2/2 - x**4/24 + O(x**6) >>> integrate(f, (x, 0, 1)) 1 - cos(1) """ from sympy.integrals import integrate if x is None: x = self.x elif iterable(x): return integrate(self.function, x) f = integrate(self.function, x) ind = integrate(self.ind, x) ind += (f - ind).limit(x, 0) # constant of integration pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t / (pow_xk + pow_x + 1) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop)) else: ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1), (k, ak.start + 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def product(self, other, x=None, n=6): """ Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order. Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> f1.product(f2, x).truncate(4) x + x**2 + x**3/3 + O(x**4) See Also ======== sympy.discrete.convolutions sympy.series.formal.FormalPowerSeriesProduct """ if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") return FormalPowerSeriesProduct(self, other) def coeff_bell(self, n): r""" self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that ``n`` should be a integer. The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. See Also ======== sympy.functions.combinatorial.numbers.bell """ inner_coeffs = [bell(n, j, tuple(self.bell_coeff_seq[:n-j+1])) for j in range(1, n+1)] k = Dummy('k') return sequence(tuple(inner_coeffs), (k, 1, oo)) def compose(self, other, x=None, n=6): r""" Returns the truncated terms of the formal power series of the composed function, up to specified ``n``. Explanation =========== If ``f`` and ``g`` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series `fp` will be as follows. .. math:: \sum\limits_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> f1.compose(f2, x).truncate() 1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6) >>> f1.compose(f2, x).truncate(8) 1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesCompose References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") if other._eval_term(0).as_coeff_mul(other.x)[0] is not S.Zero: raise ValueError("The formal power series of the inner function should not have any " "constant coefficient term.") return FormalPowerSeriesCompose(self, other) def inverse(self, x=None, n=6): r""" Returns the truncated terms of the inverse of the formal power series, up to specified ``n``. Explanation =========== If ``f`` and ``g`` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series ``fp`` will be as follows. .. math:: \sum\limits_{k=0}^{n} (-1)^{k} x_0^{-k-1} B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, exp, cos >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> f1.inverse(x).truncate() 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6) >>> f2.inverse(x).truncate(8) 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesInverse References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if n is None: return iter(self) if self._eval_term(0).is_zero: raise ValueError("Constant coefficient should exist for an inverse of a formal" " power series to exist.") return FormalPowerSeriesInverse(self) def __add__(self, other): other = sympify(other) if isinstance(other, FormalPowerSeries): if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") x, y = self.x, other.x f = self.function + other.function.subs(y, x) if self.x not in f.free_symbols: return f ak = self.ak + other.ak if self.ak.start > other.ak.start: seq = other.ak s, e = other.ak.start, self.ak.start else: seq = self.ak s, e = self.ak.start, other.ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])]) ind = self.ind + other.ind + save return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind)) elif not other.has(self.x): f = self.function + other ind = self.ind + other return self.func(f, self.x, self.x0, self.dir, (self.ak, self.xk, ind)) return Add(self, other) def __radd__(self, other): return self.__add__(other) def __neg__(self): return self.func(-self.function, self.x, self.x0, self.dir, (-self.ak, self.xk, -self.ind)) def __sub__(self, other): return self.__add__(-other) def __rsub__(self, other): return (-self).__add__(other) def __mul__(self, other): other = sympify(other) if other.has(self.x): return Mul(self, other) f = self.function * other ak = self.ak.coeff_mul(other) ind = self.ind * other return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def __rmul__(self, other): return self.__mul__(other) class FiniteFormalPowerSeries(FormalPowerSeries): """Base Class for Product, Compose and Inverse classes""" def __init__(self, *args): pass @property def ffps(self): return self.args[0] @property def gfps(self): return self.args[1] @property def f(self): return self.ffps.function @property def g(self): return self.gfps.function @property def infinite(self): raise NotImplementedError("No infinite version for an object of" " FiniteFormalPowerSeries class.") def _eval_terms(self, n): raise NotImplementedError("(%s)._eval_terms()" % self) def _eval_term(self, pt): raise NotImplementedError("By the current logic, one can get terms" "upto a certain order, instead of getting term by term.") def polynomial(self, n): return self._eval_terms(n) def truncate(self, n=6): ffps = self.ffps pt_xk = ffps.xk.coeff(n) x, x0 = ffps.x, ffps.x0 return self.polynomial(n) + Order(pt_xk, (x, x0)) def _eval_derivative(self, x): raise NotImplementedError def integrate(self, x): raise NotImplementedError class FormalPowerSeriesProduct(FiniteFormalPowerSeries): """Represents the product of two formal power series of two functions. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesProduct` object. The first argument contains the two functions involved in the product. Also, the coefficient sequence contains both the coefficient sequence of the formal power series of the involved functions. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps, gfps = self.ffps, self.gfps k = ffps.ak.variables[0] self.coeff1 = sequence(ffps.ak.formula, (k, 0, oo)) k = gfps.ak.variables[0] self.coeff2 = sequence(gfps.ak.formula, (k, 0, oo)) @property def function(self): """Function of the product of two formal power series.""" return self.f * self.g def _eval_terms(self, n): """ Returns the first ``n`` terms of the product formal power series. Term by term logic is implemented here. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> fprod = f1.product(f2, x) >>> fprod._eval_terms(4) x**3/3 + x**2 + x See Also ======== sympy.series.formal.FormalPowerSeries.product """ coeff1, coeff2 = self.coeff1, self.coeff2 aks = convolution(coeff1[:n], coeff2[:n]) terms = [] for i in range(0, n): terms.append(aks[i] * self.ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesCompose(FiniteFormalPowerSeries): """ Represents the composed formal power series of two functions. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesCompose` object. The first argument contains the outer function and the inner function involved in the omposition. Also, the coefficient sequence contains the generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ @property def function(self): """Function for the composed formal power series.""" f, g, x = self.f, self.g, self.ffps.x return f.subs(x, g) def _eval_terms(self, n): """ Returns the first `n` terms of the composed formal power series. Term by term logic is implemented here. Explanation =========== The coefficient sequence of the :obj:`FormalPowerSeriesCompose` object is the generic sequence. It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> fcomp = f1.compose(f2, x) >>> fcomp._eval_terms(6) -x**5/15 - x**4/8 + x**2/2 + x + 1 >>> fcomp._eval_terms(8) x**7/90 - x**6/240 - x**5/15 - x**4/8 + x**2/2 + x + 1 See Also ======== sympy.series.formal.FormalPowerSeries.compose sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps, gfps = self.ffps, self.gfps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = gfps.coeff_bell(i) seq = (ffps.bell_coeff_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesInverse(FiniteFormalPowerSeries): """ Represents the Inverse of a formal power series. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There is a single difference between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesInverse` object. The coefficient sequence contains the generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps = self.ffps k = ffps.xk.variables[0] inv = ffps.zero_coeff() inv_seq = sequence(inv ** (-(k + 1)), (k, 1, oo)) self.aux_seq = ffps.sign_seq * ffps.fact_seq * inv_seq @property def function(self): """Function for the inverse of a formal power series.""" f = self.f return 1 / f @property def g(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") @property def gfps(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") def _eval_terms(self, n): """ Returns the first ``n`` terms of the composed formal power series. Term by term logic is implemented here. Explanation =========== The coefficient sequence of the `FormalPowerSeriesInverse` object is the generic sequence. It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, exp, cos >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> finv1, finv2 = f1.inverse(), f2.inverse() >>> finv1._eval_terms(6) -x**5/120 + x**4/24 - x**3/6 + x**2/2 - x + 1 >>> finv2._eval_terms(8) 61*x**6/720 + 5*x**4/24 + x**2/2 + 1 See Also ======== sympy.series.formal.FormalPowerSeries.inverse sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps = self.ffps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = ffps.coeff_bell(i) seq = (self.aux_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Generates Formal Power Series of ``f``. Explanation =========== Returns the formal series expansion of ``f`` around ``x = x0`` with respect to ``x`` in the form of a ``FormalPowerSeries`` object. Formal Power Series is represented using an explicit formula computed using different algorithms. See :func:`compute_fps` for the more details regarding the computation of formula. Parameters ========== x : Symbol, optional If x is None and ``f`` is univariate, the univariate symbols will be supplied, otherwise an error will be raised. x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Examples ======== >>> from sympy import fps, ln, atan, sin >>> from sympy.abc import x, n Rational Functions >>> fps(ln(1 + x)).truncate() x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) >>> fps(atan(x), full=True).truncate() x - x**3/3 + x**5/5 + O(x**6) Symbolic Functions >>> fps(x**n*sin(x**2), x).truncate(8) -x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8)) See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.compute_fps """ f = sympify(f) if x is None: free = f.free_symbols if len(free) == 1: x = free.pop() elif not free: return f else: raise NotImplementedError("multivariate formal power series") result = compute_fps(f, x, x0, dir, hyper, order, rational, full) if result is None: return f return FormalPowerSeries(f, x, x0, dir, result)