from sympy.core import Mul from sympy.core.function import count_ops from sympy.core.traversal import preorder_traversal, bottom_up from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions import gamma from sympy.simplify.gammasimp import gammasimp, _gammasimp from sympy.utilities.timeutils import timethis @timethis('combsimp') def combsimp(expr): r""" Simplify combinatorial expressions. Explanation =========== This function takes as input an expression containing factorials, binomials, Pochhammer symbol and other "combinatorial" functions, and tries to minimize the number of those functions and reduce the size of their arguments. The algorithm works by rewriting all combinatorial functions as gamma functions and applying gammasimp() except simplification steps that may make an integer argument non-integer. See docstring of gammasimp for more information. Then it rewrites expression in terms of factorials and binomials by rewriting gammas as factorials and converting (a+b)!/a!b! into binomials. If expression has gamma functions or combinatorial functions with non-integer argument, it is automatically passed to gammasimp. Examples ======== >>> from sympy.simplify import combsimp >>> from sympy import factorial, binomial, symbols >>> n, k = symbols('n k', integer = True) >>> combsimp(factorial(n)/factorial(n - 3)) n*(n - 2)*(n - 1) >>> combsimp(binomial(n+1, k+1)/binomial(n, k)) (n + 1)/(k + 1) """ expr = expr.rewrite(gamma, piecewise=False) if any(isinstance(node, gamma) and not node.args[0].is_integer for node in preorder_traversal(expr)): return gammasimp(expr); expr = _gammasimp(expr, as_comb = True) expr = _gamma_as_comb(expr) return expr def _gamma_as_comb(expr): """ Helper function for combsimp. Rewrites expression in terms of factorials and binomials """ expr = expr.rewrite(factorial) def f(rv): if not rv.is_Mul: return rv rvd = rv.as_powers_dict() nd_fact_args = [[], []] # numerator, denominator for k in rvd: if isinstance(k, factorial) and rvd[k].is_Integer: if rvd[k].is_positive: nd_fact_args[0].extend([k.args[0]]*rvd[k]) else: nd_fact_args[1].extend([k.args[0]]*-rvd[k]) rvd[k] = 0 if not nd_fact_args[0] or not nd_fact_args[1]: return rv hit = False for m in range(2): i = 0 while i < len(nd_fact_args[m]): ai = nd_fact_args[m][i] for j in range(i + 1, len(nd_fact_args[m])): aj = nd_fact_args[m][j] sum = ai + aj if sum in nd_fact_args[1 - m]: hit = True nd_fact_args[1 - m].remove(sum) del nd_fact_args[m][j] del nd_fact_args[m][i] rvd[binomial(sum, ai if count_ops(ai) < count_ops(aj) else aj)] += ( -1 if m == 0 else 1) break else: i += 1 if hit: return Mul(*([k**rvd[k] for k in rvd] + [factorial(k) for k in nd_fact_args[0]]))/Mul(*[factorial(k) for k in nd_fact_args[1]]) return rv return bottom_up(expr, f)