from __future__ import annotations from collections.abc import Sequence import io from typing import TYPE_CHECKING, Any, cast import matplotlib.collections as mcollections import matplotlib.pyplot as plt import numpy as np from contourpy import FillType, LineType from contourpy.convert import convert_filled, convert_lines from contourpy.enum_util import as_fill_type, as_line_type from contourpy.util.mpl_util import filled_to_mpl_paths, lines_to_mpl_paths from contourpy.util.renderer import Renderer if TYPE_CHECKING: from matplotlib.axes import Axes from matplotlib.figure import Figure from numpy.typing import ArrayLike import contourpy._contourpy as cpy class MplRenderer(Renderer): """Utility renderer using Matplotlib to render a grid of plots over the same (x, y) range. Args: nrows (int, optional): Number of rows of plots, default ``1``. ncols (int, optional): Number of columns of plots, default ``1``. figsize (tuple(float, float), optional): Figure size in inches, default ``(9, 9)``. show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``. backend (str, optional): Matplotlib backend to use or ``None`` for default backend. Default ``None``. gridspec_kw (dict, optional): Gridspec keyword arguments to pass to ``plt.subplots``, default None. """ _axes: Sequence[Axes] _fig: Figure _want_tight: bool def __init__( self, nrows: int = 1, ncols: int = 1, figsize: tuple[float, float] = (9, 9), show_frame: bool = True, backend: str | None = None, gridspec_kw: dict[str, Any] | None = None, ) -> None: if backend is not None: import matplotlib matplotlib.use(backend) kwargs: dict[str, Any] = dict(figsize=figsize, squeeze=False, sharex=True, sharey=True) if gridspec_kw is not None: kwargs["gridspec_kw"] = gridspec_kw else: kwargs["subplot_kw"] = dict(aspect="equal") self._fig, axes = plt.subplots(nrows, ncols, **kwargs) self._axes = axes.flatten() if not show_frame: for ax in self._axes: ax.axis("off") self._want_tight = True def __del__(self) -> None: if hasattr(self, "_fig"): plt.close(self._fig) def _autoscale(self) -> None: # Using axes._need_autoscale attribute if need to autoscale before rendering after adding # lines/filled. Only want to autoscale once per axes regardless of how many lines/filled # added. for ax in self._axes: if getattr(ax, "_need_autoscale", False): ax.autoscale_view(tight=True) ax._need_autoscale = False # type: ignore[attr-defined] if self._want_tight and len(self._axes) > 1: self._fig.tight_layout() def _get_ax(self, ax: Axes | int) -> Axes: if isinstance(ax, int): ax = self._axes[ax] return ax def filled( self, filled: cpy.FillReturn, fill_type: FillType | str, ax: Axes | int = 0, color: str = "C0", alpha: float = 0.7, ) -> None: """Plot filled contours on a single Axes. Args: filled (sequence of arrays): Filled contour data as returned by :func:`~contourpy.ContourGenerator.filled`. fill_type (FillType or str): Type of ``filled`` data as returned by :attr:`~contourpy.ContourGenerator.fill_type`, or string equivalent ax (int or Maplotlib Axes, optional): Which axes to plot on, default ``0``. color (str, optional): Color to plot with. May be a string color or the letter ``"C"`` followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap. Default ``"C0"``. alpha (float, optional): Opacity to plot with, default ``0.7``. """ fill_type = as_fill_type(fill_type) ax = self._get_ax(ax) paths = filled_to_mpl_paths(filled, fill_type) collection = mcollections.PathCollection( paths, facecolors=color, edgecolors="none", lw=0, alpha=alpha) ax.add_collection(collection) ax._need_autoscale = True # type: ignore[attr-defined] def grid( self, x: ArrayLike, y: ArrayLike, ax: Axes | int = 0, color: str = "black", alpha: float = 0.1, point_color: str | None = None, quad_as_tri_alpha: float = 0, ) -> None: """Plot quad grid lines on a single Axes. Args: x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points. y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points. ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``. color (str, optional): Color to plot grid lines, default ``"black"``. alpha (float, optional): Opacity to plot lines with, default ``0.1``. point_color (str, optional): Color to plot grid points or ``None`` if grid points should not be plotted, default ``None``. quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default 0. Colors may be a string color or the letter ``"C"`` followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap. Warning: ``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked. """ ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) kwargs: dict[str, Any] = dict(color=color, alpha=alpha) ax.plot(x, y, x.T, y.T, **kwargs) if quad_as_tri_alpha > 0: # Assumes no quad mask. xmid = 0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:]) ymid = 0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:]) kwargs["alpha"] = quad_as_tri_alpha ax.plot( np.stack((x[:-1, :-1], xmid, x[1:, 1:])).reshape((3, -1)), np.stack((y[:-1, :-1], ymid, y[1:, 1:])).reshape((3, -1)), np.stack((x[1:, :-1], xmid, x[:-1, 1:])).reshape((3, -1)), np.stack((y[1:, :-1], ymid, y[:-1, 1:])).reshape((3, -1)), **kwargs) if point_color is not None: ax.plot(x, y, color=point_color, alpha=alpha, marker="o", lw=0) ax._need_autoscale = True # type: ignore[attr-defined] def lines( self, lines: cpy.LineReturn, line_type: LineType | str, ax: Axes | int = 0, color: str = "C0", alpha: float = 1.0, linewidth: float = 1, ) -> None: """Plot contour lines on a single Axes. Args: lines (sequence of arrays): Contour line data as returned by :func:`~contourpy.ContourGenerator.lines`. line_type (LineType or str): Type of ``lines`` data as returned by :attr:`~contourpy.ContourGenerator.line_type`, or string equivalent. ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``. color (str, optional): Color to plot lines. May be a string color or the letter ``"C"`` followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap. Default ``"C0"``. alpha (float, optional): Opacity to plot lines with, default ``1.0``. linewidth (float, optional): Width of lines, default ``1``. """ line_type = as_line_type(line_type) ax = self._get_ax(ax) paths = lines_to_mpl_paths(lines, line_type) collection = mcollections.PathCollection( paths, facecolors="none", edgecolors=color, lw=linewidth, alpha=alpha) ax.add_collection(collection) ax._need_autoscale = True # type: ignore[attr-defined] def mask( self, x: ArrayLike, y: ArrayLike, z: ArrayLike | np.ma.MaskedArray[Any, Any], ax: Axes | int = 0, color: str = "black", ) -> None: """Plot masked out grid points as circles on a single Axes. Args: x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points. y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points. z (masked array of shape (ny, nx): z-values. ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``. color (str, optional): Circle color, default ``"black"``. """ mask = np.ma.getmask(z) # type: ignore[no-untyped-call] if mask is np.ma.nomask: return ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) ax.plot(x[mask], y[mask], "o", c=color) def save(self, filename: str, transparent: bool = False) -> None: """Save plots to SVG or PNG file. Args: filename (str): Filename to save to. transparent (bool, optional): Whether background should be transparent, default ``False``. """ self._autoscale() self._fig.savefig(filename, transparent=transparent) def save_to_buffer(self) -> io.BytesIO: """Save plots to an ``io.BytesIO`` buffer. Return: BytesIO: PNG image buffer. """ self._autoscale() buf = io.BytesIO() self._fig.savefig(buf, format="png") buf.seek(0) return buf def show(self) -> None: """Show plots in an interactive window, in the usual Matplotlib manner. """ self._autoscale() plt.show() def title(self, title: str, ax: Axes | int = 0, color: str | None = None) -> None: """Set the title of a single Axes. Args: title (str): Title text. ax (int or Matplotlib Axes, optional): Which Axes to set the title of, default ``0``. color (str, optional): Color to set title. May be a string color or the letter ``"C"`` followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap. Default is ``None`` which uses Matplotlib's default title color that depends on the stylesheet in use. """ if color: self._get_ax(ax).set_title(title, color=color) else: self._get_ax(ax).set_title(title) def z_values( self, x: ArrayLike, y: ArrayLike, z: ArrayLike, ax: Axes | int = 0, color: str = "green", fmt: str = ".1f", quad_as_tri: bool = False, ) -> None: """Show ``z`` values on a single Axes. Args: x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points. y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points. z (array-like of shape (ny, nx): z-values. ax (int or Matplotlib Axes, optional): Which Axes to plot on, default ``0``. color (str, optional): Color of added text. May be a string color or the letter ``"C"`` followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the ``tab10`` colormap. Default ``"green"``. fmt (str, optional): Format to display z-values, default ``".1f"``. quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centers of quads. Warning: ``quad_as_tri=True`` shows z-values for all quads, even if masked. """ ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) z = np.asarray(z) ny, nx = z.shape for j in range(ny): for i in range(nx): ax.text(x[j, i], y[j, i], f"{z[j, i]:{fmt}}", ha="center", va="center", color=color, clip_on=True) if quad_as_tri: for j in range(ny-1): for i in range(nx-1): xx = np.mean(x[j:j+2, i:i+2]) yy = np.mean(y[j:j+2, i:i+2]) zz = np.mean(z[j:j+2, i:i+2]) ax.text(xx, yy, f"{zz:{fmt}}", ha="center", va="center", color=color, clip_on=True) class MplTestRenderer(MplRenderer): """Test renderer implemented using Matplotlib. No whitespace around plots and no spines/ticks displayed. Uses Agg backend, so can only save to file/buffer, cannot call ``show()``. """ def __init__( self, nrows: int = 1, ncols: int = 1, figsize: tuple[float, float] = (9, 9), ) -> None: gridspec = { "left": 0.01, "right": 0.99, "top": 0.99, "bottom": 0.01, "wspace": 0.01, "hspace": 0.01, } super().__init__( nrows, ncols, figsize, show_frame=True, backend="Agg", gridspec_kw=gridspec, ) for ax in self._axes: ax.set_xmargin(0.0) ax.set_ymargin(0.0) ax.set_xticks([]) ax.set_yticks([]) self._want_tight = False class MplDebugRenderer(MplRenderer): """Debug renderer implemented using Matplotlib. Extends ``MplRenderer`` to add extra information to help in debugging such as markers, arrows, text, etc. """ def __init__( self, nrows: int = 1, ncols: int = 1, figsize: tuple[float, float] = (9, 9), show_frame: bool = True, ) -> None: super().__init__(nrows, ncols, figsize, show_frame) def _arrow( self, ax: Axes, line_start: cpy.CoordinateArray, line_end: cpy.CoordinateArray, color: str, alpha: float, arrow_size: float, ) -> None: mid = 0.5*(line_start + line_end) along = line_end - line_start along /= np.sqrt(np.dot(along, along)) # Unit vector. right = np.asarray((along[1], -along[0])) arrow = np.stack(( mid - (along*0.5 - right)*arrow_size, mid + along*0.5*arrow_size, mid - (along*0.5 + right)*arrow_size, )) ax.plot(arrow[:, 0], arrow[:, 1], "-", c=color, alpha=alpha) def filled( self, filled: cpy.FillReturn, fill_type: FillType | str, ax: Axes | int = 0, color: str = "C1", alpha: float = 0.7, line_color: str = "C0", line_alpha: float = 0.7, point_color: str = "C0", start_point_color: str = "red", arrow_size: float = 0.1, ) -> None: fill_type = as_fill_type(fill_type) super().filled(filled, fill_type, ax, color, alpha) if line_color is None and point_color is None: return ax = self._get_ax(ax) filled = convert_filled(filled, fill_type, FillType.ChunkCombinedOffset) # Lines. if line_color is not None: for points, offsets in zip(*filled): if points is None: continue for start, end in zip(offsets[:-1], offsets[1:]): xys = points[start:end] ax.plot(xys[:, 0], xys[:, 1], c=line_color, alpha=line_alpha) if arrow_size > 0.0: n = len(xys) for i in range(n-1): self._arrow(ax, xys[i], xys[i+1], line_color, line_alpha, arrow_size) # Points. if point_color is not None: for points, offsets in zip(*filled): if points is None: continue mask = np.ones(offsets[-1], dtype=bool) mask[offsets[1:]-1] = False # Exclude end points. if start_point_color is not None: start_indices = offsets[:-1] mask[start_indices] = False # Exclude start points. ax.plot( points[:, 0][mask], points[:, 1][mask], "o", c=point_color, alpha=line_alpha) if start_point_color is not None: ax.plot(points[:, 0][start_indices], points[:, 1][start_indices], "o", c=start_point_color, alpha=line_alpha) def lines( self, lines: cpy.LineReturn, line_type: LineType | str, ax: Axes | int = 0, color: str = "C0", alpha: float = 1.0, linewidth: float = 1, point_color: str = "C0", start_point_color: str = "red", arrow_size: float = 0.1, ) -> None: line_type = as_line_type(line_type) super().lines(lines, line_type, ax, color, alpha, linewidth) if arrow_size == 0.0 and point_color is None: return ax = self._get_ax(ax) separate_lines = convert_lines(lines, line_type, LineType.Separate) if TYPE_CHECKING: separate_lines = cast(cpy.LineReturn_Separate, separate_lines) if arrow_size > 0.0: for line in separate_lines: for i in range(len(line)-1): self._arrow(ax, line[i], line[i+1], color, alpha, arrow_size) if point_color is not None: for line in separate_lines: start_index = 0 end_index = len(line) if start_point_color is not None: ax.plot(line[0, 0], line[0, 1], "o", c=start_point_color, alpha=alpha) start_index = 1 if line[0][0] == line[-1][0] and line[0][1] == line[-1][1]: end_index -= 1 ax.plot(line[start_index:end_index, 0], line[start_index:end_index, 1], "o", c=color, alpha=alpha) def point_numbers( self, x: ArrayLike, y: ArrayLike, z: ArrayLike, ax: Axes | int = 0, color: str = "red", ) -> None: ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) z = np.asarray(z) ny, nx = z.shape for j in range(ny): for i in range(nx): quad = i + j*nx ax.text(x[j, i], y[j, i], str(quad), ha="right", va="top", color=color, clip_on=True) def quad_numbers( self, x: ArrayLike, y: ArrayLike, z: ArrayLike, ax: Axes | int = 0, color: str = "blue", ) -> None: ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) z = np.asarray(z) ny, nx = z.shape for j in range(1, ny): for i in range(1, nx): quad = i + j*nx xmid = x[j-1:j+1, i-1:i+1].mean() ymid = y[j-1:j+1, i-1:i+1].mean() ax.text(xmid, ymid, str(quad), ha="center", va="center", color=color, clip_on=True) def z_levels( self, x: ArrayLike, y: ArrayLike, z: ArrayLike, lower_level: float, upper_level: float | None = None, ax: Axes | int = 0, color: str = "green", ) -> None: ax = self._get_ax(ax) x, y = self._grid_as_2d(x, y) z = np.asarray(z) ny, nx = z.shape for j in range(ny): for i in range(nx): zz = z[j, i] if upper_level is not None and zz > upper_level: z_level = 2 elif zz > lower_level: z_level = 1 else: z_level = 0 ax.text(x[j, i], y[j, i], str(z_level), ha="left", va="bottom", color=color, clip_on=True)