from collections.abc import MutableMapping import functools import numpy as np import matplotlib as mpl from matplotlib import _api, _docstring from matplotlib.artist import allow_rasterization import matplotlib.transforms as mtransforms import matplotlib.patches as mpatches import matplotlib.path as mpath class Spine(mpatches.Patch): """ An axis spine -- the line noting the data area boundaries. Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions. See `~.Spine.set_position` for more information. The default position is ``('outward', 0)``. Spines are subclasses of `.Patch`, and inherit much of their behavior. Spines draw a line, a circle, or an arc depending on if `~.Spine.set_patch_line`, `~.Spine.set_patch_circle`, or `~.Spine.set_patch_arc` has been called. Line-like is the default. For examples see :ref:`spines_examples`. """ def __str__(self): return "Spine" @_docstring.dedent_interpd def __init__(self, axes, spine_type, path, **kwargs): """ Parameters ---------- axes : `~matplotlib.axes.Axes` The `~.axes.Axes` instance containing the spine. spine_type : str The spine type. path : `~matplotlib.path.Path` The `.Path` instance used to draw the spine. Other Parameters ---------------- **kwargs Valid keyword arguments are: %(Patch:kwdoc)s """ super().__init__(**kwargs) self.axes = axes self.set_figure(self.axes.figure) self.spine_type = spine_type self.set_facecolor('none') self.set_edgecolor(mpl.rcParams['axes.edgecolor']) self.set_linewidth(mpl.rcParams['axes.linewidth']) self.set_capstyle('projecting') self.axis = None self.set_zorder(2.5) self.set_transform(self.axes.transData) # default transform self._bounds = None # default bounds # Defer initial position determination. (Not much support for # non-rectangular axes is currently implemented, and this lets # them pass through the spines machinery without errors.) self._position = None _api.check_isinstance(mpath.Path, path=path) self._path = path # To support drawing both linear and circular spines, this # class implements Patch behavior three ways. If # self._patch_type == 'line', behave like a mpatches.PathPatch # instance. If self._patch_type == 'circle', behave like a # mpatches.Ellipse instance. If self._patch_type == 'arc', behave like # a mpatches.Arc instance. self._patch_type = 'line' # Behavior copied from mpatches.Ellipse: # Note: This cannot be calculated until this is added to an Axes self._patch_transform = mtransforms.IdentityTransform() def set_patch_arc(self, center, radius, theta1, theta2): """Set the spine to be arc-like.""" self._patch_type = 'arc' self._center = center self._width = radius * 2 self._height = radius * 2 self._theta1 = theta1 self._theta2 = theta2 self._path = mpath.Path.arc(theta1, theta2) # arc drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True def set_patch_circle(self, center, radius): """Set the spine to be circular.""" self._patch_type = 'circle' self._center = center self._width = radius * 2 self._height = radius * 2 # circle drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True def set_patch_line(self): """Set the spine to be linear.""" self._patch_type = 'line' self.stale = True # Behavior copied from mpatches.Ellipse: def _recompute_transform(self): """ Notes ----- This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This makes it very important to call the accessor method and not directly access the transformation member variable. """ assert self._patch_type in ('arc', 'circle') center = (self.convert_xunits(self._center[0]), self.convert_yunits(self._center[1])) width = self.convert_xunits(self._width) height = self.convert_yunits(self._height) self._patch_transform = mtransforms.Affine2D() \ .scale(width * 0.5, height * 0.5) \ .translate(*center) def get_patch_transform(self): if self._patch_type in ('arc', 'circle'): self._recompute_transform() return self._patch_transform else: return super().get_patch_transform() def get_window_extent(self, renderer=None): """ Return the window extent of the spines in display space, including padding for ticks (but not their labels) See Also -------- matplotlib.axes.Axes.get_tightbbox matplotlib.axes.Axes.get_window_extent """ # make sure the location is updated so that transforms etc are correct: self._adjust_location() bb = super().get_window_extent(renderer=renderer) if self.axis is None or not self.axis.get_visible(): return bb bboxes = [bb] drawn_ticks = self.axis._update_ticks() major_tick = next(iter({*drawn_ticks} & {*self.axis.majorTicks}), None) minor_tick = next(iter({*drawn_ticks} & {*self.axis.minorTicks}), None) for tick in [major_tick, minor_tick]: if tick is None: continue bb0 = bb.frozen() tickl = tick._size tickdir = tick._tickdir if tickdir == 'out': padout = 1 padin = 0 elif tickdir == 'in': padout = 0 padin = 1 else: padout = 0.5 padin = 0.5 padout = padout * tickl / 72 * self.figure.dpi padin = padin * tickl / 72 * self.figure.dpi if tick.tick1line.get_visible(): if self.spine_type == 'left': bb0.x0 = bb0.x0 - padout bb0.x1 = bb0.x1 + padin elif self.spine_type == 'bottom': bb0.y0 = bb0.y0 - padout bb0.y1 = bb0.y1 + padin if tick.tick2line.get_visible(): if self.spine_type == 'right': bb0.x1 = bb0.x1 + padout bb0.x0 = bb0.x0 - padin elif self.spine_type == 'top': bb0.y1 = bb0.y1 + padout bb0.y0 = bb0.y0 - padout bboxes.append(bb0) return mtransforms.Bbox.union(bboxes) def get_path(self): return self._path def _ensure_position_is_set(self): if self._position is None: # default position self._position = ('outward', 0.0) # in points self.set_position(self._position) def register_axis(self, axis): """ Register an axis. An axis should be registered with its corresponding spine from the Axes instance. This allows the spine to clear any axis properties when needed. """ self.axis = axis self.stale = True def clear(self): """Clear the current spine.""" self._clear() if self.axis is not None: self.axis.clear() def _clear(self): """ Clear things directly related to the spine. In this way it is possible to avoid clearing the Axis as well when calling from library code where it is known that the Axis is cleared separately. """ self._position = None # clear position def _adjust_location(self): """Automatically set spine bounds to the view interval.""" if self.spine_type == 'circle': return if self._bounds is not None: low, high = self._bounds elif self.spine_type in ('left', 'right'): low, high = self.axes.viewLim.intervaly elif self.spine_type in ('top', 'bottom'): low, high = self.axes.viewLim.intervalx else: raise ValueError(f'unknown spine spine_type: {self.spine_type}') if self._patch_type == 'arc': if self.spine_type in ('bottom', 'top'): try: direction = self.axes.get_theta_direction() except AttributeError: direction = 1 try: offset = self.axes.get_theta_offset() except AttributeError: offset = 0 low = low * direction + offset high = high * direction + offset if low > high: low, high = high, low self._path = mpath.Path.arc(np.rad2deg(low), np.rad2deg(high)) if self.spine_type == 'bottom': rmin, rmax = self.axes.viewLim.intervaly try: rorigin = self.axes.get_rorigin() except AttributeError: rorigin = rmin scaled_diameter = (rmin - rorigin) / (rmax - rorigin) self._height = scaled_diameter self._width = scaled_diameter else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) else: v1 = self._path.vertices assert v1.shape == (2, 2), 'unexpected vertices shape' if self.spine_type in ['left', 'right']: v1[0, 1] = low v1[1, 1] = high elif self.spine_type in ['bottom', 'top']: v1[0, 0] = low v1[1, 0] = high else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) @allow_rasterization def draw(self, renderer): self._adjust_location() ret = super().draw(renderer) self.stale = False return ret def set_position(self, position): """ Set the position of the spine. Spine position is specified by a 2 tuple of (position type, amount). The position types are: * 'outward': place the spine out from the data area by the specified number of points. (Negative values place the spine inwards.) * 'axes': place the spine at the specified Axes coordinate (0 to 1). * 'data': place the spine at the specified data coordinate. Additionally, shorthand notations define a special positions: * 'center' -> ``('axes', 0.5)`` * 'zero' -> ``('data', 0.0)`` Examples -------- :doc:`/gallery/spines/spine_placement_demo` """ if position in ('center', 'zero'): # special positions pass else: if len(position) != 2: raise ValueError("position should be 'center' or 2-tuple") if position[0] not in ['outward', 'axes', 'data']: raise ValueError("position[0] should be one of 'outward', " "'axes', or 'data' ") self._position = position self.set_transform(self.get_spine_transform()) if self.axis is not None: self.axis.reset_ticks() self.stale = True def get_position(self): """Return the spine position.""" self._ensure_position_is_set() return self._position def get_spine_transform(self): """Return the spine transform.""" self._ensure_position_is_set() position = self._position if isinstance(position, str): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) assert len(position) == 2, 'position should be 2-tuple' position_type, amount = position _api.check_in_list(['axes', 'outward', 'data'], position_type=position_type) if self.spine_type in ['left', 'right']: base_transform = self.axes.get_yaxis_transform(which='grid') elif self.spine_type in ['top', 'bottom']: base_transform = self.axes.get_xaxis_transform(which='grid') else: raise ValueError(f'unknown spine spine_type: {self.spine_type!r}') if position_type == 'outward': if amount == 0: # short circuit commonest case return base_transform else: offset_vec = {'left': (-1, 0), 'right': (1, 0), 'bottom': (0, -1), 'top': (0, 1), }[self.spine_type] # calculate x and y offset in dots offset_dots = amount * np.array(offset_vec) / 72 return (base_transform + mtransforms.ScaledTranslation( *offset_dots, self.figure.dpi_scale_trans)) elif position_type == 'axes': if self.spine_type in ['left', 'right']: # keep y unchanged, fix x at amount return (mtransforms.Affine2D.from_values(0, 0, 0, 1, amount, 0) + base_transform) elif self.spine_type in ['bottom', 'top']: # keep x unchanged, fix y at amount return (mtransforms.Affine2D.from_values(1, 0, 0, 0, 0, amount) + base_transform) elif position_type == 'data': if self.spine_type in ('right', 'top'): # The right and top spines have a default position of 1 in # axes coordinates. When specifying the position in data # coordinates, we need to calculate the position relative to 0. amount -= 1 if self.spine_type in ('left', 'right'): return mtransforms.blended_transform_factory( mtransforms.Affine2D().translate(amount, 0) + self.axes.transData, self.axes.transData) elif self.spine_type in ('bottom', 'top'): return mtransforms.blended_transform_factory( self.axes.transData, mtransforms.Affine2D().translate(0, amount) + self.axes.transData) def set_bounds(self, low=None, high=None): """ Set the spine bounds. Parameters ---------- low : float or None, optional The lower spine bound. Passing *None* leaves the limit unchanged. The bounds may also be passed as the tuple (*low*, *high*) as the first positional argument. .. ACCEPTS: (low: float, high: float) high : float or None, optional The higher spine bound. Passing *None* leaves the limit unchanged. """ if self.spine_type == 'circle': raise ValueError( 'set_bounds() method incompatible with circular spines') if high is None and np.iterable(low): low, high = low old_low, old_high = self.get_bounds() or (None, None) if low is None: low = old_low if high is None: high = old_high self._bounds = (low, high) self.stale = True def get_bounds(self): """Get the bounds of the spine.""" return self._bounds @classmethod def linear_spine(cls, axes, spine_type, **kwargs): """Create and return a linear `Spine`.""" # all values of 0.999 get replaced upon call to set_bounds() if spine_type == 'left': path = mpath.Path([(0.0, 0.999), (0.0, 0.999)]) elif spine_type == 'right': path = mpath.Path([(1.0, 0.999), (1.0, 0.999)]) elif spine_type == 'bottom': path = mpath.Path([(0.999, 0.0), (0.999, 0.0)]) elif spine_type == 'top': path = mpath.Path([(0.999, 1.0), (0.999, 1.0)]) else: raise ValueError('unable to make path for spine "%s"' % spine_type) result = cls(axes, spine_type, path, **kwargs) result.set_visible(mpl.rcParams[f'axes.spines.{spine_type}']) return result @classmethod def arc_spine(cls, axes, spine_type, center, radius, theta1, theta2, **kwargs): """Create and return an arc `Spine`.""" path = mpath.Path.arc(theta1, theta2) result = cls(axes, spine_type, path, **kwargs) result.set_patch_arc(center, radius, theta1, theta2) return result @classmethod def circular_spine(cls, axes, center, radius, **kwargs): """Create and return a circular `Spine`.""" path = mpath.Path.unit_circle() spine_type = 'circle' result = cls(axes, spine_type, path, **kwargs) result.set_patch_circle(center, radius) return result def set_color(self, c): """ Set the edgecolor. Parameters ---------- c : color Notes ----- This method does not modify the facecolor (which defaults to "none"), unlike the `.Patch.set_color` method defined in the parent class. Use `.Patch.set_facecolor` to set the facecolor. """ self.set_edgecolor(c) self.stale = True class SpinesProxy: """ A proxy to broadcast ``set_*()`` and ``set()`` method calls to contained `.Spines`. The proxy cannot be used for any other operations on its members. The supported methods are determined dynamically based on the contained spines. If not all spines support a given method, it's executed only on the subset of spines that support it. """ def __init__(self, spine_dict): self._spine_dict = spine_dict def __getattr__(self, name): broadcast_targets = [spine for spine in self._spine_dict.values() if hasattr(spine, name)] if (name != 'set' and not name.startswith('set_')) or not broadcast_targets: raise AttributeError( f"'SpinesProxy' object has no attribute '{name}'") def x(_targets, _funcname, *args, **kwargs): for spine in _targets: getattr(spine, _funcname)(*args, **kwargs) x = functools.partial(x, broadcast_targets, name) x.__doc__ = broadcast_targets[0].__doc__ return x def __dir__(self): names = [] for spine in self._spine_dict.values(): names.extend(name for name in dir(spine) if name.startswith('set_')) return list(sorted(set(names))) class Spines(MutableMapping): r""" The container of all `.Spine`\s in an Axes. The interface is dict-like mapping names (e.g. 'left') to `.Spine` objects. Additionally, it implements some pandas.Series-like features like accessing elements by attribute:: spines['top'].set_visible(False) spines.top.set_visible(False) Multiple spines can be addressed simultaneously by passing a list:: spines[['top', 'right']].set_visible(False) Use an open slice to address all spines:: spines[:].set_visible(False) The latter two indexing methods will return a `SpinesProxy` that broadcasts all ``set_*()`` and ``set()`` calls to its members, but cannot be used for any other operation. """ def __init__(self, **kwargs): self._dict = kwargs @classmethod def from_dict(cls, d): return cls(**d) def __getstate__(self): return self._dict def __setstate__(self, state): self.__init__(**state) def __getattr__(self, name): try: return self._dict[name] except KeyError: raise AttributeError( f"'Spines' object does not contain a '{name}' spine") def __getitem__(self, key): if isinstance(key, list): unknown_keys = [k for k in key if k not in self._dict] if unknown_keys: raise KeyError(', '.join(unknown_keys)) return SpinesProxy({k: v for k, v in self._dict.items() if k in key}) if isinstance(key, tuple): raise ValueError('Multiple spines must be passed as a single list') if isinstance(key, slice): if key.start is None and key.stop is None and key.step is None: return SpinesProxy(self._dict) else: raise ValueError( 'Spines does not support slicing except for the fully ' 'open slice [:] to access all spines.') return self._dict[key] def __setitem__(self, key, value): # TODO: Do we want to deprecate adding spines? self._dict[key] = value def __delitem__(self, key): # TODO: Do we want to deprecate deleting spines? del self._dict[key] def __iter__(self): return iter(self._dict) def __len__(self): return len(self._dict)