import datetime import platform import re from unittest import mock import contourpy import numpy as np from numpy.testing import ( assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal) import matplotlib as mpl from matplotlib import pyplot as plt, rc_context, ticker from matplotlib.colors import LogNorm, same_color import matplotlib.patches as mpatches from matplotlib.testing.decorators import check_figures_equal, image_comparison import pytest # Helper to test the transition from ContourSets holding multiple Collections to being a # single Collection; remove once the deprecated old layout expires. def _maybe_split_collections(do_split): if not do_split: return for fig in map(plt.figure, plt.get_fignums()): for ax in fig.axes: for coll in ax.collections: if isinstance(coll, mpl.contour.ContourSet): with pytest.warns(mpl._api.MatplotlibDeprecationWarning): coll.collections def test_contour_shape_1d_valid(): x = np.arange(10) y = np.arange(9) z = np.random.random((9, 10)) fig, ax = plt.subplots() ax.contour(x, y, z) def test_contour_shape_2d_valid(): x = np.arange(10) y = np.arange(9) xg, yg = np.meshgrid(x, y) z = np.random.random((9, 10)) fig, ax = plt.subplots() ax.contour(xg, yg, z) @pytest.mark.parametrize("args, message", [ ((np.arange(9), np.arange(9), np.empty((9, 10))), 'Length of x (9) must match number of columns in z (10)'), ((np.arange(10), np.arange(10), np.empty((9, 10))), 'Length of y (10) must match number of rows in z (9)'), ((np.empty((10, 10)), np.arange(10), np.empty((9, 10))), 'Number of dimensions of x (2) and y (1) do not match'), ((np.arange(10), np.empty((10, 10)), np.empty((9, 10))), 'Number of dimensions of x (1) and y (2) do not match'), ((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))), 'Shapes of x (9, 9) and z (9, 10) do not match'), ((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))), 'Shapes of y (9, 9) and z (9, 10) do not match'), ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))), 'Inputs x and y must be 1D or 2D, not 3D'), ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))), 'Input z must be 2D, not 3D'), (([[0]],), # github issue 8197 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'), (([0], [0], [[0]]), 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'), ]) def test_contour_shape_error(args, message): fig, ax = plt.subplots() with pytest.raises(TypeError, match=re.escape(message)): ax.contour(*args) def test_contour_no_valid_levels(): fig, ax = plt.subplots() # no warning for empty levels. ax.contour(np.random.rand(9, 9), levels=[]) # no warning if levels is given and is not within the range of z. cs = ax.contour(np.arange(81).reshape((9, 9)), levels=[100]) # ... and if fmt is given. ax.clabel(cs, fmt={100: '%1.2f'}) # no warning if z is uniform. ax.contour(np.ones((9, 9))) def test_contour_Nlevels(): # A scalar levels arg or kwarg should trigger auto level generation. # https://github.com/matplotlib/matplotlib/issues/11913 z = np.arange(12).reshape((3, 4)) fig, ax = plt.subplots() cs1 = ax.contour(z, 5) assert len(cs1.levels) > 1 cs2 = ax.contour(z, levels=5) assert (cs1.levels == cs2.levels).all() @check_figures_equal(extensions=['png']) def test_contour_set_paths(fig_test, fig_ref): cs_test = fig_test.subplots().contour([[0, 1], [1, 2]]) cs_ref = fig_ref.subplots().contour([[1, 0], [2, 1]]) cs_test.set_paths(cs_ref.get_paths()) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_manual_labels'], remove_text=True, style='mpl20', tol=0.26) def test_contour_manual_labels(split_collections): x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10)) z = np.max(np.dstack([abs(x), abs(y)]), 2) plt.figure(figsize=(6, 2), dpi=200) cs = plt.contour(x, y, z) _maybe_split_collections(split_collections) pts = np.array([(1.0, 3.0), (1.0, 4.4), (1.0, 6.0)]) plt.clabel(cs, manual=pts) pts = np.array([(2.0, 3.0), (2.0, 4.4), (2.0, 6.0)]) plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g')) def test_contour_manual_moveto(): x = np.linspace(-10, 10) y = np.linspace(-10, 10) X, Y = np.meshgrid(x, y) Z = X**2 * 1 / Y**2 - 1 contours = plt.contour(X, Y, Z, levels=[0, 100]) # This point lies on the `MOVETO` line for the 100 contour # but is actually closest to the 0 contour point = (1.3, 1) clabels = plt.clabel(contours, manual=[point]) # Ensure that the 0 contour was chosen, not the 100 contour assert clabels[0].get_text() == "0" @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_disconnected_segments'], remove_text=True, style='mpl20', extensions=['png']) def test_contour_label_with_disconnected_segments(split_collections): x, y = np.mgrid[-1:1:21j, -1:1:21j] z = 1 / np.sqrt(0.01 + (x + 0.3) ** 2 + y ** 2) z += 1 / np.sqrt(0.01 + (x - 0.3) ** 2 + y ** 2) plt.figure() cs = plt.contour(x, y, z, levels=[7]) # Adding labels should invalidate the old style _maybe_split_collections(split_collections) cs.clabel(manual=[(0.2, 0.1)]) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True) def test_given_colors_levels_and_extends(split_collections): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False _, axs = plt.subplots(2, 4) data = np.arange(12).reshape(3, 4) colors = ['red', 'yellow', 'pink', 'blue', 'black'] levels = [2, 4, 8, 10] for i, ax in enumerate(axs.flat): filled = i % 2 == 0. extend = ['neither', 'min', 'max', 'both'][i // 2] if filled: # If filled, we have 3 colors with no extension, # 4 colors with one extension, and 5 colors with both extensions first_color = 1 if extend in ['max', 'neither'] else None last_color = -1 if extend in ['min', 'neither'] else None c = ax.contourf(data, colors=colors[first_color:last_color], levels=levels, extend=extend) else: # If not filled, we have 4 levels and 4 colors c = ax.contour(data, colors=colors[:-1], levels=levels, extend=extend) plt.colorbar(c, ax=ax) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_log_locator.svg'], style='mpl20', remove_text=False) def test_log_locator_levels(split_collections): fig, ax = plt.subplots() N = 100 x = np.linspace(-3.0, 3.0, N) y = np.linspace(-2.0, 2.0, N) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2) data = Z1 + 50 * Z2 c = ax.contourf(data, locator=ticker.LogLocator()) assert_array_almost_equal(c.levels, np.power(10.0, np.arange(-6, 3))) cb = fig.colorbar(c, ax=ax) assert_array_almost_equal(cb.ax.get_yticks(), c.levels) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_datetime_axis.png'], style='mpl20') def test_contour_datetime_axis(split_collections): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(20)]) y = np.arange(20) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.contour(x, y, z) plt.subplot(222) plt.contourf(x, y, z) x = np.repeat(x[np.newaxis], 20, axis=0) y = np.repeat(y[:, np.newaxis], 20, axis=1) plt.subplot(223) plt.contour(x, y, z) plt.subplot(224) plt.contourf(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_test_label_transforms.png'], remove_text=True, style='mpl20', tol=1.1) def test_labels(split_collections): # Adapted from pylab_examples example code: contour_demo.py # see issues #2475, #2843, and #2818 for explanation delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi) Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) / (2 * np.pi * 0.5 * 1.5)) # difference of Gaussians Z = 10.0 * (Z2 - Z1) fig, ax = plt.subplots(1, 1) CS = ax.contour(X, Y, Z) disp_units = [(216, 177), (359, 290), (521, 406)] data_units = [(-2, .5), (0, -1.5), (2.8, 1)] # Adding labels should invalidate the old style _maybe_split_collections(split_collections) CS.clabel() for x, y in data_units: CS.add_label_near(x, y, inline=True, transform=None) for x, y in disp_units: CS.add_label_near(x, y, inline=True, transform=False) _maybe_split_collections(split_collections) def test_label_contour_start(): # Set up data and figure/axes that result in automatic labelling adding the # label to the start of a contour _, ax = plt.subplots(dpi=100) lats = lons = np.linspace(-np.pi / 2, np.pi / 2, 50) lons, lats = np.meshgrid(lons, lats) wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons) mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2) data = wave + mean cs = ax.contour(lons, lats, data) with mock.patch.object( cs, '_split_path_and_get_label_rotation', wraps=cs._split_path_and_get_label_rotation) as mocked_splitter: # Smoke test that we can add the labels cs.clabel(fontsize=9) # Verify at least one label was added to the start of a contour. I.e. the # splitting method was called with idx=0 at least once. idxs = [cargs[0][1] for cargs in mocked_splitter.call_args_list] assert 0 in idxs @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_corner_mask_False.png', 'contour_corner_mask_True.png'], remove_text=True, tol=1.88) def test_corner_mask(split_collections): n = 60 mask_level = 0.95 noise_amp = 1.0 np.random.seed([1]) x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n)) z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n) mask = np.random.rand(n, n) >= mask_level z = np.ma.array(z, mask=mask) for corner_mask in [False, True]: plt.figure() plt.contourf(z, corner_mask=corner_mask) _maybe_split_collections(split_collections) def test_contourf_decreasing_levels(): # github issue 5477. z = [[0.1, 0.3], [0.5, 0.7]] plt.figure() with pytest.raises(ValueError): plt.contourf(z, [1.0, 0.0]) def test_contourf_symmetric_locator(): # github issue 7271 z = np.arange(12).reshape((3, 4)) locator = plt.MaxNLocator(nbins=4, symmetric=True) cs = plt.contourf(z, locator=locator) assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5)) def test_circular_contour_warning(): # Check that almost circular contours don't throw a warning x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4)) r = np.hypot(x, y) plt.figure() cs = plt.contour(x, y, r) plt.clabel(cs) @pytest.mark.parametrize("use_clabeltext, contour_zorder, clabel_zorder", [(True, 123, 1234), (False, 123, 1234), (True, 123, None), (False, 123, None)]) def test_clabel_zorder(use_clabeltext, contour_zorder, clabel_zorder): x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10)) z = np.max(np.dstack([abs(x), abs(y)]), 2) fig, (ax1, ax2) = plt.subplots(ncols=2) cs = ax1.contour(x, y, z, zorder=contour_zorder) cs_filled = ax2.contourf(x, y, z, zorder=contour_zorder) clabels1 = cs.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext) clabels2 = cs_filled.clabel(zorder=clabel_zorder, use_clabeltext=use_clabeltext) if clabel_zorder is None: expected_clabel_zorder = 2+contour_zorder else: expected_clabel_zorder = clabel_zorder for clabel in clabels1: assert clabel.get_zorder() == expected_clabel_zorder for clabel in clabels2: assert clabel.get_zorder() == expected_clabel_zorder def test_clabel_with_large_spacing(): # When the inline spacing is large relative to the contour, it may cause the # entire contour to be removed. In current implementation, one line segment is # retained between the identified points. # This behavior may be worth reconsidering, but check to be sure we do not produce # an invalid path, which results in an error at clabel call time. # see gh-27045 for more information x = y = np.arange(-3.0, 3.01, 0.05) X, Y = np.meshgrid(x, y) Z = np.exp(-X**2 - Y**2) fig, ax = plt.subplots() contourset = ax.contour(X, Y, Z, levels=[0.01, 0.2, .5, .8]) ax.clabel(contourset, inline_spacing=100) # tol because ticks happen to fall on pixel boundaries so small # floating point changes in tick location flip which pixel gets # the tick. @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(['contour_log_extension.png'], remove_text=True, style='mpl20', tol=1.444) def test_contourf_log_extension(split_collections): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False # Test that contourf with lognorm is extended correctly fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 5)) fig.subplots_adjust(left=0.05, right=0.95) # make data set with large range e.g. between 1e-8 and 1e10 data_exp = np.linspace(-7.5, 9.5, 1200) data = np.power(10, data_exp).reshape(30, 40) # make manual levels e.g. between 1e-4 and 1e-6 levels_exp = np.arange(-4., 7.) levels = np.power(10., levels_exp) # original data c1 = ax1.contourf(data, norm=LogNorm(vmin=data.min(), vmax=data.max())) # just show data in levels c2 = ax2.contourf(data, levels=levels, norm=LogNorm(vmin=levels.min(), vmax=levels.max()), extend='neither') # extend data from levels c3 = ax3.contourf(data, levels=levels, norm=LogNorm(vmin=levels.min(), vmax=levels.max()), extend='both') cb = plt.colorbar(c1, ax=ax1) assert cb.ax.get_ylim() == (1e-8, 1e10) cb = plt.colorbar(c2, ax=ax2) assert_array_almost_equal_nulp(cb.ax.get_ylim(), np.array((1e-4, 1e6))) cb = plt.colorbar(c3, ax=ax3) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison( ['contour_addlines.png'], remove_text=True, style='mpl20', tol=0.15 if platform.machine() in ('aarch64', 'ppc64le', 's390x') else 0.03) # tolerance is because image changed minutely when tick finding on # colorbars was cleaned up... def test_contour_addlines(split_collections): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False fig, ax = plt.subplots() np.random.seed(19680812) X = np.random.rand(10, 10)*10000 pcm = ax.pcolormesh(X) # add 1000 to make colors visible... cont = ax.contour(X+1000) cb = fig.colorbar(pcm) cb.add_lines(cont) assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(baseline_images=['contour_uneven'], extensions=['png'], remove_text=True, style='mpl20') def test_contour_uneven(split_collections): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False z = np.arange(24).reshape(4, 6) fig, axs = plt.subplots(1, 2) ax = axs[0] cs = ax.contourf(z, levels=[2, 4, 6, 10, 20]) fig.colorbar(cs, ax=ax, spacing='proportional') ax = axs[1] cs = ax.contourf(z, levels=[2, 4, 6, 10, 20]) fig.colorbar(cs, ax=ax, spacing='uniform') _maybe_split_collections(split_collections) @pytest.mark.parametrize( "rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected", [ (1.23, None, None, 1.23), (1.23, 4.24, None, 4.24), (1.23, 4.24, 5.02, 5.02) ]) def test_contour_linewidth( rc_lines_linewidth, rc_contour_linewidth, call_linewidths, expected): with rc_context(rc={"lines.linewidth": rc_lines_linewidth, "contour.linewidth": rc_contour_linewidth}): fig, ax = plt.subplots() X = np.arange(4*3).reshape(4, 3) cs = ax.contour(X, linewidths=call_linewidths) assert cs.get_linewidths()[0] == expected with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"): assert cs.tlinewidths[0][0] == expected @pytest.mark.backend("pdf") def test_label_nonagg(): # This should not crash even if the canvas doesn't have a get_renderer(). plt.clabel(plt.contour([[1, 2], [3, 4]])) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(baseline_images=['contour_closed_line_loop'], extensions=['png'], remove_text=True) def test_contour_closed_line_loop(split_collections): # github issue 19568. z = [[0, 0, 0], [0, 2, 0], [0, 0, 0], [2, 1, 2]] fig, ax = plt.subplots(figsize=(2, 2)) ax.contour(z, [0.5], linewidths=[20], alpha=0.7) ax.set_xlim(-0.1, 2.1) ax.set_ylim(-0.1, 3.1) _maybe_split_collections(split_collections) def test_quadcontourset_reuse(): # If QuadContourSet returned from one contour(f) call is passed as first # argument to another the underlying C++ contour generator will be reused. x, y = np.meshgrid([0.0, 1.0], [0.0, 1.0]) z = x + y fig, ax = plt.subplots() qcs1 = ax.contourf(x, y, z) qcs2 = ax.contour(x, y, z) assert qcs2._contour_generator != qcs1._contour_generator qcs3 = ax.contour(qcs1, z) assert qcs3._contour_generator == qcs1._contour_generator @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(baseline_images=['contour_manual'], extensions=['png'], remove_text=True, tol=0.89) def test_contour_manual(split_collections): # Manually specifying contour lines/polygons to plot. from matplotlib.contour import ContourSet fig, ax = plt.subplots(figsize=(4, 4)) cmap = 'viridis' # Segments only (no 'kind' codes). lines0 = [[[2, 0], [1, 2], [1, 3]]] # Single line. lines1 = [[[3, 0], [3, 2]], [[3, 3], [3, 4]]] # Two lines. filled01 = [[[0, 0], [0, 4], [1, 3], [1, 2], [2, 0]]] filled12 = [[[2, 0], [3, 0], [3, 2], [1, 3], [1, 2]], # Two polygons. [[1, 4], [3, 4], [3, 3]]] ContourSet(ax, [0, 1, 2], [filled01, filled12], filled=True, cmap=cmap) ContourSet(ax, [1, 2], [lines0, lines1], linewidths=3, colors=['r', 'k']) # Segments and kind codes (1 = MOVETO, 2 = LINETO, 79 = CLOSEPOLY). segs = [[[4, 0], [7, 0], [7, 3], [4, 3], [4, 0], [5, 1], [5, 2], [6, 2], [6, 1], [5, 1]]] kinds = [[1, 2, 2, 2, 79, 1, 2, 2, 2, 79]] # Polygon containing hole. ContourSet(ax, [2, 3], [segs], [kinds], filled=True, cmap=cmap) ContourSet(ax, [2], [segs], [kinds], colors='k', linewidths=3) _maybe_split_collections(split_collections) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(baseline_images=['contour_line_start_on_corner_edge'], extensions=['png'], remove_text=True) def test_contour_line_start_on_corner_edge(split_collections): fig, ax = plt.subplots(figsize=(6, 5)) x, y = np.meshgrid([0, 1, 2, 3, 4], [0, 1, 2]) z = 1.2 - (x - 2)**2 + (y - 1)**2 mask = np.zeros_like(z, dtype=bool) mask[1, 1] = mask[1, 3] = True z = np.ma.array(z, mask=mask) filled = ax.contourf(x, y, z, corner_mask=True) cbar = fig.colorbar(filled) lines = ax.contour(x, y, z, corner_mask=True, colors='k') cbar.add_lines(lines) _maybe_split_collections(split_collections) def test_find_nearest_contour(): xy = np.indices((15, 15)) img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2)) cs = plt.contour(img, 10) nearest_contour = cs.find_nearest_contour(1, 1, pixel=False) expected_nearest = (1, 0, 33, 1.965966, 1.965966, 1.866183) assert_array_almost_equal(nearest_contour, expected_nearest) nearest_contour = cs.find_nearest_contour(8, 1, pixel=False) expected_nearest = (1, 0, 5, 7.550173, 1.587542, 0.547550) assert_array_almost_equal(nearest_contour, expected_nearest) nearest_contour = cs.find_nearest_contour(2, 5, pixel=False) expected_nearest = (3, 0, 21, 1.884384, 5.023335, 0.013911) assert_array_almost_equal(nearest_contour, expected_nearest) nearest_contour = cs.find_nearest_contour(2, 5, indices=(5, 7), pixel=False) expected_nearest = (5, 0, 16, 2.628202, 5.0, 0.394638) assert_array_almost_equal(nearest_contour, expected_nearest) def test_find_nearest_contour_no_filled(): xy = np.indices((15, 15)) img = np.exp(-np.pi * (np.sum((xy - 5)**2, 0)/5.**2)) cs = plt.contourf(img, 10) with pytest.raises(ValueError, match="Method does not support filled contours"): cs.find_nearest_contour(1, 1, pixel=False) with pytest.raises(ValueError, match="Method does not support filled contours"): cs.find_nearest_contour(1, 10, indices=(5, 7), pixel=False) with pytest.raises(ValueError, match="Method does not support filled contours"): cs.find_nearest_contour(2, 5, indices=(2, 7), pixel=True) @mpl.style.context("default") def test_contour_autolabel_beyond_powerlimits(): ax = plt.figure().add_subplot() cs = plt.contour(np.geomspace(1e-6, 1e-4, 100).reshape(10, 10), levels=[.25e-5, 1e-5, 4e-5]) ax.clabel(cs) # Currently, the exponent is missing, but that may be fixed in the future. assert {text.get_text() for text in ax.texts} == {"0.25", "1.00", "4.00"} def test_contourf_legend_elements(): from matplotlib.patches import Rectangle x = np.arange(1, 10) y = x.reshape(-1, 1) h = x * y cs = plt.contourf(h, levels=[10, 30, 50], colors=['#FFFF00', '#FF00FF', '#00FFFF'], extend='both') cs.cmap.set_over('red') cs.cmap.set_under('blue') cs.changed() artists, labels = cs.legend_elements() assert labels == ['$x \\leq -1e+250s$', '$10.0 < x \\leq 30.0$', '$30.0 < x \\leq 50.0$', '$x > 1e+250s$'] expected_colors = ('blue', '#FFFF00', '#FF00FF', 'red') assert all(isinstance(a, Rectangle) for a in artists) assert all(same_color(a.get_facecolor(), c) for a, c in zip(artists, expected_colors)) def test_contour_legend_elements(): x = np.arange(1, 10) y = x.reshape(-1, 1) h = x * y colors = ['blue', '#00FF00', 'red'] cs = plt.contour(h, levels=[10, 30, 50], colors=colors, extend='both') artists, labels = cs.legend_elements() assert labels == ['$x = 10.0$', '$x = 30.0$', '$x = 50.0$'] assert all(isinstance(a, mpl.lines.Line2D) for a in artists) assert all(same_color(a.get_color(), c) for a, c in zip(artists, colors)) @pytest.mark.parametrize( "algorithm, klass", [('mpl2005', contourpy.Mpl2005ContourGenerator), ('mpl2014', contourpy.Mpl2014ContourGenerator), ('serial', contourpy.SerialContourGenerator), ('threaded', contourpy.ThreadedContourGenerator), ('invalid', None)]) def test_algorithm_name(algorithm, klass): z = np.array([[1.0, 2.0], [3.0, 4.0]]) if klass is not None: cs = plt.contourf(z, algorithm=algorithm) assert isinstance(cs._contour_generator, klass) else: with pytest.raises(ValueError): plt.contourf(z, algorithm=algorithm) @pytest.mark.parametrize( "algorithm", ['mpl2005', 'mpl2014', 'serial', 'threaded']) def test_algorithm_supports_corner_mask(algorithm): z = np.array([[1.0, 2.0], [3.0, 4.0]]) # All algorithms support corner_mask=False plt.contourf(z, algorithm=algorithm, corner_mask=False) # Only some algorithms support corner_mask=True if algorithm != 'mpl2005': plt.contourf(z, algorithm=algorithm, corner_mask=True) else: with pytest.raises(ValueError): plt.contourf(z, algorithm=algorithm, corner_mask=True) @pytest.mark.parametrize("split_collections", [False, True]) @image_comparison(baseline_images=['contour_all_algorithms'], extensions=['png'], remove_text=True, tol=0.06) def test_all_algorithms(split_collections): algorithms = ['mpl2005', 'mpl2014', 'serial', 'threaded'] rng = np.random.default_rng(2981) x, y = np.meshgrid(np.linspace(0.0, 1.0, 10), np.linspace(0.0, 1.0, 6)) z = np.sin(15*x)*np.cos(10*y) + rng.normal(scale=0.5, size=(6, 10)) mask = np.zeros_like(z, dtype=bool) mask[3, 7] = True z = np.ma.array(z, mask=mask) _, axs = plt.subplots(2, 2) for ax, algorithm in zip(axs.ravel(), algorithms): ax.contourf(x, y, z, algorithm=algorithm) ax.contour(x, y, z, algorithm=algorithm, colors='k') ax.set_title(algorithm) _maybe_split_collections(split_collections) def test_subfigure_clabel(): # Smoke test for gh#23173 delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-(X**2) - Y**2) Z2 = np.exp(-((X - 1) ** 2) - (Y - 1) ** 2) Z = (Z1 - Z2) * 2 fig = plt.figure() figs = fig.subfigures(nrows=1, ncols=2) for f in figs: ax = f.subplots() CS = ax.contour(X, Y, Z) ax.clabel(CS, inline=True, fontsize=10) ax.set_title("Simplest default with labels") @pytest.mark.parametrize( "style", ['solid', 'dashed', 'dashdot', 'dotted']) def test_linestyles(style): delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 # Positive contour defaults to solid fig1, ax1 = plt.subplots() CS1 = ax1.contour(X, Y, Z, 6, colors='k') ax1.clabel(CS1, fontsize=9, inline=True) ax1.set_title('Single color - positive contours solid (default)') assert CS1.linestyles is None # default # Change linestyles using linestyles kwarg fig2, ax2 = plt.subplots() CS2 = ax2.contour(X, Y, Z, 6, colors='k', linestyles=style) ax2.clabel(CS2, fontsize=9, inline=True) ax2.set_title(f'Single color - positive contours {style}') assert CS2.linestyles == style # Ensure linestyles do not change when negative_linestyles is defined fig3, ax3 = plt.subplots() CS3 = ax3.contour(X, Y, Z, 6, colors='k', linestyles=style, negative_linestyles='dashdot') ax3.clabel(CS3, fontsize=9, inline=True) ax3.set_title(f'Single color - positive contours {style}') assert CS3.linestyles == style @pytest.mark.parametrize( "style", ['solid', 'dashed', 'dashdot', 'dotted']) def test_negative_linestyles(style): delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 # Negative contour defaults to dashed fig1, ax1 = plt.subplots() CS1 = ax1.contour(X, Y, Z, 6, colors='k') ax1.clabel(CS1, fontsize=9, inline=True) ax1.set_title('Single color - negative contours dashed (default)') assert CS1.negative_linestyles == 'dashed' # default # Change negative_linestyles using rcParams plt.rcParams['contour.negative_linestyle'] = style fig2, ax2 = plt.subplots() CS2 = ax2.contour(X, Y, Z, 6, colors='k') ax2.clabel(CS2, fontsize=9, inline=True) ax2.set_title(f'Single color - negative contours {style}' '(using rcParams)') assert CS2.negative_linestyles == style # Change negative_linestyles using negative_linestyles kwarg fig3, ax3 = plt.subplots() CS3 = ax3.contour(X, Y, Z, 6, colors='k', negative_linestyles=style) ax3.clabel(CS3, fontsize=9, inline=True) ax3.set_title(f'Single color - negative contours {style}') assert CS3.negative_linestyles == style # Ensure negative_linestyles do not change when linestyles is defined fig4, ax4 = plt.subplots() CS4 = ax4.contour(X, Y, Z, 6, colors='k', linestyles='dashdot', negative_linestyles=style) ax4.clabel(CS4, fontsize=9, inline=True) ax4.set_title(f'Single color - negative contours {style}') assert CS4.negative_linestyles == style def test_contour_remove(): ax = plt.figure().add_subplot() orig_children = ax.get_children() cs = ax.contour(np.arange(16).reshape((4, 4))) cs.clabel() assert ax.get_children() != orig_children cs.remove() assert ax.get_children() == orig_children def test_contour_no_args(): fig, ax = plt.subplots() data = [[0, 1], [1, 0]] with pytest.raises(TypeError, match=r"contour\(\) takes from 1 to 4"): ax.contour(Z=data) def test_contour_clip_path(): fig, ax = plt.subplots() data = [[0, 1], [1, 0]] circle = mpatches.Circle([0.5, 0.5], 0.5, transform=ax.transAxes) cs = ax.contour(data, clip_path=circle) assert cs.get_clip_path() is not None def test_bool_autolevel(): x, y = np.random.rand(2, 9) z = (np.arange(9) % 2).reshape((3, 3)).astype(bool) m = [[False, False, False], [False, True, False], [False, False, False]] assert plt.contour(z.tolist()).levels.tolist() == [.5] assert plt.contour(z).levels.tolist() == [.5] assert plt.contour(np.ma.array(z, mask=m)).levels.tolist() == [.5] assert plt.contourf(z.tolist()).levels.tolist() == [0, .5, 1] assert plt.contourf(z).levels.tolist() == [0, .5, 1] assert plt.contourf(np.ma.array(z, mask=m)).levels.tolist() == [0, .5, 1] z = z.ravel() assert plt.tricontour(x, y, z.tolist()).levels.tolist() == [.5] assert plt.tricontour(x, y, z).levels.tolist() == [.5] assert plt.tricontourf(x, y, z.tolist()).levels.tolist() == [0, .5, 1] assert plt.tricontourf(x, y, z).levels.tolist() == [0, .5, 1] def test_all_nan(): x = np.array([[np.nan, np.nan], [np.nan, np.nan]]) assert_array_almost_equal(plt.contour(x).levels, [-1e-13, -7.5e-14, -5e-14, -2.4e-14, 0.0, 2.4e-14, 5e-14, 7.5e-14, 1e-13]) def test_allsegs_allkinds(): x, y = np.meshgrid(np.arange(0, 10, 2), np.arange(0, 10, 2)) z = np.sin(x) * np.cos(y) cs = plt.contour(x, y, z, levels=[0, 0.5]) # Expect two levels, the first with 5 segments and the second with 4. for result in [cs.allsegs, cs.allkinds]: assert len(result) == 2 assert len(result[0]) == 5 assert len(result[1]) == 4 def test_deprecated_apis(): cs = plt.contour(np.arange(16).reshape((4, 4))) with pytest.warns(mpl.MatplotlibDeprecationWarning, match="collections"): colls = cs.collections with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tcolors"): assert_array_equal(cs.tcolors, [c.get_edgecolor() for c in colls]) with pytest.warns(mpl.MatplotlibDeprecationWarning, match="tlinewidths"): assert cs.tlinewidths == [c.get_linewidth() for c in colls] with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"): assert cs.antialiased with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"): cs.antialiased = False with pytest.warns(mpl.MatplotlibDeprecationWarning, match="antialiased"): assert not cs.antialiased