import cython from cython import Py_ssize_t from numpy cimport ( float32_t, float64_t, int8_t, int16_t, int32_t, int64_t, ndarray, uint8_t, uint16_t, uint32_t, uint64_t, ) import numpy as np cimport numpy as cnp cnp.import_array() from pandas._libs.lib cimport c_is_list_like ctypedef fused reshape_t: uint8_t uint16_t uint32_t uint64_t int8_t int16_t int32_t int64_t float32_t float64_t object @cython.wraparound(False) @cython.boundscheck(False) def unstack(reshape_t[:, :] values, const uint8_t[:] mask, Py_ssize_t stride, Py_ssize_t length, Py_ssize_t width, reshape_t[:, :] new_values, uint8_t[:, :] new_mask) -> None: """ Transform long values to wide new_values. Parameters ---------- values : typed ndarray mask : np.ndarray[bool] stride : int length : int width : int new_values : np.ndarray[bool] result array new_mask : np.ndarray[bool] result mask """ cdef: Py_ssize_t i, j, w, nulls, s, offset if reshape_t is not object: # evaluated at compile-time with nogil: for i in range(stride): nulls = 0 for j in range(length): for w in range(width): offset = j * width + w if mask[offset]: s = i * width + w new_values[j, s] = values[offset - nulls, i] new_mask[j, s] = 1 else: nulls += 1 else: # object-dtype, identical to above but we cannot use nogil for i in range(stride): nulls = 0 for j in range(length): for w in range(width): offset = j * width + w if mask[offset]: s = i * width + w new_values[j, s] = values[offset - nulls, i] new_mask[j, s] = 1 else: nulls += 1 @cython.wraparound(False) @cython.boundscheck(False) def explode(ndarray[object] values): """ transform array list-likes to long form preserve non-list entries Parameters ---------- values : object ndarray Returns ------- ndarray[object] result ndarray[int64_t] counts """ cdef: Py_ssize_t i, j, count, n object v ndarray[object] result ndarray[int64_t] counts # find the resulting len n = len(values) counts = np.zeros(n, dtype='int64') for i in range(n): v = values[i] if c_is_list_like(v, True): if len(v): counts[i] += len(v) else: # empty list-like, use a nan marker counts[i] += 1 else: counts[i] += 1 result = np.empty(counts.sum(), dtype='object') count = 0 for i in range(n): v = values[i] if c_is_list_like(v, True): if len(v): v = list(v) for j in range(len(v)): result[count] = v[j] count += 1 else: # empty list-like, use a nan marker result[count] = np.nan count += 1 else: # replace with the existing scalar result[count] = v count += 1 return result, counts