from sympy.core import S, sympify from sympy.core.symbol import (Dummy, symbols) from sympy.functions import Piecewise, piecewise_fold from sympy.sets.sets import Interval from functools import lru_cache def _ivl(cond, x): """return the interval corresponding to the condition Conditions in spline's Piecewise give the range over which an expression is valid like (lo <= x) & (x <= hi). This function returns (lo, hi). """ from sympy.logic.boolalg import And if isinstance(cond, And) and len(cond.args) == 2: a, b = cond.args if a.lts == x: a, b = b, a return a.lts, b.gts raise TypeError('unexpected cond type: %s' % cond) def _add_splines(c, b1, d, b2, x): """Construct c*b1 + d*b2.""" if S.Zero in (b1, c): rv = piecewise_fold(d * b2) elif S.Zero in (b2, d): rv = piecewise_fold(c * b1) else: new_args = [] # Just combining the Piecewise without any fancy optimization p1 = piecewise_fold(c * b1) p2 = piecewise_fold(d * b2) # Search all Piecewise arguments except (0, True) p2args = list(p2.args[:-1]) # This merging algorithm assumes the conditions in # p1 and p2 are sorted for arg in p1.args[:-1]: expr = arg.expr cond = arg.cond lower = _ivl(cond, x)[0] # Check p2 for matching conditions that can be merged for i, arg2 in enumerate(p2args): expr2 = arg2.expr cond2 = arg2.cond lower_2, upper_2 = _ivl(cond2, x) if cond2 == cond: # Conditions match, join expressions expr += expr2 # Remove matching element del p2args[i] # No need to check the rest break elif lower_2 < lower and upper_2 <= lower: # Check if arg2 condition smaller than arg1, # add to new_args by itself (no match expected # in p1) new_args.append(arg2) del p2args[i] break # Checked all, add expr and cond new_args.append((expr, cond)) # Add remaining items from p2args new_args.extend(p2args) # Add final (0, True) new_args.append((0, True)) rv = Piecewise(*new_args, evaluate=False) return rv.expand() @lru_cache(maxsize=128) def bspline_basis(d, knots, n, x): """ The $n$-th B-spline at $x$ of degree $d$ with knots. Explanation =========== B-Splines are piecewise polynomials of degree $d$. They are defined on a set of knots, which is a sequence of integers or floats. Examples ======== The 0th degree splines have a value of 1 on a single interval: >>> from sympy import bspline_basis >>> from sympy.abc import x >>> d = 0 >>> knots = tuple(range(5)) >>> bspline_basis(d, knots, 0, x) Piecewise((1, (x >= 0) & (x <= 1)), (0, True)) For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that are indexed by ``n`` (starting at 0). Here is an example of a cubic B-spline: >>> bspline_basis(3, tuple(range(5)), 0, x) Piecewise((x**3/6, (x >= 0) & (x <= 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 1) & (x <= 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 2) & (x <= 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, (x >= 3) & (x <= 4)), (0, True)) By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives: >>> d = 1 >>> knots = (0, 0, 2, 3, 4) >>> bspline_basis(d, knots, 0, x) Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True)) It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-spline many times, it is best to lambdify them first: >>> from sympy import lambdify >>> d = 3 >>> knots = tuple(range(10)) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5) Parameters ========== d : integer degree of bspline knots : list of integer values list of knots points of bspline n : integer $n$-th B-spline x : symbol See Also ======== bspline_basis_set References ========== .. [1] https://en.wikipedia.org/wiki/B-spline """ # make sure x has no assumptions so conditions don't evaluate xvar = x x = Dummy() knots = tuple(sympify(k) for k in knots) d = int(d) n = int(n) n_knots = len(knots) n_intervals = n_knots - 1 if n + d + 1 > n_intervals: raise ValueError("n + d + 1 must not exceed len(knots) - 1") if d == 0: result = Piecewise( (S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True) ) elif d > 0: denom = knots[n + d + 1] - knots[n + 1] if denom != S.Zero: B = (knots[n + d + 1] - x) / denom b2 = bspline_basis(d - 1, knots, n + 1, x) else: b2 = B = S.Zero denom = knots[n + d] - knots[n] if denom != S.Zero: A = (x - knots[n]) / denom b1 = bspline_basis(d - 1, knots, n, x) else: b1 = A = S.Zero result = _add_splines(A, b1, B, b2, x) else: raise ValueError("degree must be non-negative: %r" % n) # return result with user-given x return result.xreplace({x: xvar}) def bspline_basis_set(d, knots, x): """ Return the ``len(knots)-d-1`` B-splines at *x* of degree *d* with *knots*. Explanation =========== This function returns a list of piecewise polynomials that are the ``len(knots)-d-1`` B-splines of degree *d* for the given knots. This function calls ``bspline_basis(d, knots, n, x)`` for different values of *n*. Examples ======== >>> from sympy import bspline_basis_set >>> from sympy.abc import x >>> d = 2 >>> knots = range(5) >>> splines = bspline_basis_set(d, knots, x) >>> splines [Piecewise((x**2/2, (x >= 0) & (x <= 1)), (-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)), (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), (0, True)), Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)), (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)), (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), (0, True))] Parameters ========== d : integer degree of bspline knots : list of integers list of knots points of bspline x : symbol See Also ======== bspline_basis """ n_splines = len(knots) - d - 1 return [bspline_basis(d, tuple(knots), i, x) for i in range(n_splines)] def interpolating_spline(d, x, X, Y): """ Return spline of degree *d*, passing through the given *X* and *Y* values. Explanation =========== This function returns a piecewise function such that each part is a polynomial of degree not greater than *d*. The value of *d* must be 1 or greater and the values of *X* must be strictly increasing. Examples ======== >>> from sympy import interpolating_spline >>> from sympy.abc import x >>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7]) Piecewise((3*x, (x >= 1) & (x <= 2)), (7 - x/2, (x >= 2) & (x <= 4)), (2*x/3 + 7/3, (x >= 4) & (x <= 7))) >>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3]) Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4))) Parameters ========== d : integer Degree of Bspline strictly greater than equal to one x : symbol X : list of strictly increasing integer values list of X coordinates through which the spline passes Y : list of strictly increasing integer values list of Y coordinates through which the spline passes See Also ======== bspline_basis_set, interpolating_poly """ from sympy.solvers.solveset import linsolve from sympy.matrices.dense import Matrix # Input sanitization d = sympify(d) if not (d.is_Integer and d.is_positive): raise ValueError("Spline degree must be a positive integer, not %s." % d) if len(X) != len(Y): raise ValueError("Number of X and Y coordinates must be the same.") if len(X) < d + 1: raise ValueError("Degree must be less than the number of control points.") if not all(a < b for a, b in zip(X, X[1:])): raise ValueError("The x-coordinates must be strictly increasing.") X = [sympify(i) for i in X] # Evaluating knots value if d.is_odd: j = (d + 1) // 2 interior_knots = X[j:-j] else: j = d // 2 interior_knots = [ (a + b)/2 for a, b in zip(X[j : -j - 1], X[j + 1 : -j]) ] knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1) basis = bspline_basis_set(d, knots, x) A = [[b.subs(x, v) for b in basis] for v in X] coeff = linsolve((Matrix(A), Matrix(Y)), symbols("c0:{}".format(len(X)), cls=Dummy)) coeff = list(coeff)[0] intervals = {c for b in basis for (e, c) in b.args if c != True} # Sorting the intervals # ival contains the end-points of each interval ival = [_ivl(c, x) for c in intervals] com = zip(ival, intervals) com = sorted(com, key=lambda x: x[0]) intervals = [y for x, y in com] basis_dicts = [{c: e for (e, c) in b.args} for b in basis] spline = [] for i in intervals: piece = sum( [c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)], S.Zero ) spline.append((piece, i)) return Piecewise(*spline)