"""Geometrical Points. Contains ======== Point Point2D Point3D When methods of Point require 1 or more points as arguments, they can be passed as a sequence of coordinates or Points: >>> from sympy import Point >>> Point(1, 1).is_collinear((2, 2), (3, 4)) False >>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4)) False """ import warnings from sympy.core import S, sympify, Expr from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.numbers import Float from sympy.core.parameters import global_parameters from sympy.simplify import nsimplify, simplify from sympy.geometry.exceptions import GeometryError from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.complexes import im from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices import Matrix from sympy.matrices.expressions import Transpose from sympy.utilities.iterables import uniq, is_sequence from sympy.utilities.misc import filldedent, func_name, Undecidable from .entity import GeometryEntity from mpmath.libmp.libmpf import prec_to_dps class Point(GeometryEntity): """A point in a n-dimensional Euclidean space. Parameters ========== coords : sequence of n-coordinate values. In the special case where n=2 or 3, a Point2D or Point3D will be created as appropriate. evaluate : if `True` (default), all floats are turn into exact types. dim : number of coordinates the point should have. If coordinates are unspecified, they are padded with zeros. on_morph : indicates what should happen when the number of coordinates of a point need to be changed by adding or removing zeros. Possible values are `'warn'`, `'error'`, or `ignore` (default). No warning or error is given when `*args` is empty and `dim` is given. An error is always raised when trying to remove nonzero coordinates. Attributes ========== length origin: A `Point` representing the origin of the appropriately-dimensioned space. Raises ====== TypeError : When instantiating with anything but a Point or sequence ValueError : when instantiating with a sequence with length < 2 or when trying to reduce dimensions if keyword `on_morph='error'` is set. See Also ======== sympy.geometry.line.Segment : Connects two Points Examples ======== >>> from sympy import Point >>> from sympy.abc import x >>> Point(1, 2, 3) Point3D(1, 2, 3) >>> Point([1, 2]) Point2D(1, 2) >>> Point(0, x) Point2D(0, x) >>> Point(dim=4) Point(0, 0, 0, 0) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point(0.5, 0.25) Point2D(1/2, 1/4) >>> Point(0.5, 0.25, evaluate=False) Point2D(0.5, 0.25) """ is_Point = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) on_morph = kwargs.get('on_morph', 'ignore') # unpack into coords coords = args[0] if len(args) == 1 else args # check args and handle quickly handle Point instances if isinstance(coords, Point): # even if we're mutating the dimension of a point, we # don't reevaluate its coordinates evaluate = False if len(coords) == kwargs.get('dim', len(coords)): return coords if not is_sequence(coords): raise TypeError(filldedent(''' Expecting sequence of coordinates, not `{}`''' .format(func_name(coords)))) # A point where only `dim` is specified is initialized # to zeros. if len(coords) == 0 and kwargs.get('dim', None): coords = (S.Zero,)*kwargs.get('dim') coords = Tuple(*coords) dim = kwargs.get('dim', len(coords)) if len(coords) < 2: raise ValueError(filldedent(''' Point requires 2 or more coordinates or keyword `dim` > 1.''')) if len(coords) != dim: message = ("Dimension of {} needs to be changed " "from {} to {}.").format(coords, len(coords), dim) if on_morph == 'ignore': pass elif on_morph == "error": raise ValueError(message) elif on_morph == 'warn': warnings.warn(message, stacklevel=2) else: raise ValueError(filldedent(''' on_morph value should be 'error', 'warn' or 'ignore'.''')) if any(coords[dim:]): raise ValueError('Nonzero coordinates cannot be removed.') if any(a.is_number and im(a).is_zero is False for a in coords): raise ValueError('Imaginary coordinates are not permitted.') if not all(isinstance(a, Expr) for a in coords): raise TypeError('Coordinates must be valid SymPy expressions.') # pad with zeros appropriately coords = coords[:dim] + (S.Zero,)*(dim - len(coords)) # Turn any Floats into rationals and simplify # any expressions before we instantiate if evaluate: coords = coords.xreplace({ f: simplify(nsimplify(f, rational=True)) for f in coords.atoms(Float)}) # return 2D or 3D instances if len(coords) == 2: kwargs['_nocheck'] = True return Point2D(*coords, **kwargs) elif len(coords) == 3: kwargs['_nocheck'] = True return Point3D(*coords, **kwargs) # the general Point return GeometryEntity.__new__(cls, *coords) def __abs__(self): """Returns the distance between this point and the origin.""" origin = Point([0]*len(self)) return Point.distance(origin, self) def __add__(self, other): """Add other to self by incrementing self's coordinates by those of other. Notes ===== >>> from sympy import Point When sequences of coordinates are passed to Point methods, they are converted to a Point internally. This __add__ method does not do that so if floating point values are used, a floating point result (in terms of SymPy Floats) will be returned. >>> Point(1, 2) + (.1, .2) Point2D(1.1, 2.2) If this is not desired, the `translate` method can be used or another Point can be added: >>> Point(1, 2).translate(.1, .2) Point2D(11/10, 11/5) >>> Point(1, 2) + Point(.1, .2) Point2D(11/10, 11/5) See Also ======== sympy.geometry.point.Point.translate """ try: s, o = Point._normalize_dimension(self, Point(other, evaluate=False)) except TypeError: raise GeometryError("Don't know how to add {} and a Point object".format(other)) coords = [simplify(a + b) for a, b in zip(s, o)] return Point(coords, evaluate=False) def __contains__(self, item): return item in self.args def __truediv__(self, divisor): """Divide point's coordinates by a factor.""" divisor = sympify(divisor) coords = [simplify(x/divisor) for x in self.args] return Point(coords, evaluate=False) def __eq__(self, other): if not isinstance(other, Point) or len(self.args) != len(other.args): return False return self.args == other.args def __getitem__(self, key): return self.args[key] def __hash__(self): return hash(self.args) def __iter__(self): return self.args.__iter__() def __len__(self): return len(self.args) def __mul__(self, factor): """Multiply point's coordinates by a factor. Notes ===== >>> from sympy import Point When multiplying a Point by a floating point number, the coordinates of the Point will be changed to Floats: >>> Point(1, 2)*0.1 Point2D(0.1, 0.2) If this is not desired, the `scale` method can be used or else only multiply or divide by integers: >>> Point(1, 2).scale(1.1, 1.1) Point2D(11/10, 11/5) >>> Point(1, 2)*11/10 Point2D(11/10, 11/5) See Also ======== sympy.geometry.point.Point.scale """ factor = sympify(factor) coords = [simplify(x*factor) for x in self.args] return Point(coords, evaluate=False) def __rmul__(self, factor): """Multiply a factor by point's coordinates.""" return self.__mul__(factor) def __neg__(self): """Negate the point.""" coords = [-x for x in self.args] return Point(coords, evaluate=False) def __sub__(self, other): """Subtract two points, or subtract a factor from this point's coordinates.""" return self + [-x for x in other] @classmethod def _normalize_dimension(cls, *points, **kwargs): """Ensure that points have the same dimension. By default `on_morph='warn'` is passed to the `Point` constructor.""" # if we have a built-in ambient dimension, use it dim = getattr(cls, '_ambient_dimension', None) # override if we specified it dim = kwargs.get('dim', dim) # if no dim was given, use the highest dimensional point if dim is None: dim = max(i.ambient_dimension for i in points) if all(i.ambient_dimension == dim for i in points): return list(points) kwargs['dim'] = dim kwargs['on_morph'] = kwargs.get('on_morph', 'warn') return [Point(i, **kwargs) for i in points] @staticmethod def affine_rank(*args): """The affine rank of a set of points is the dimension of the smallest affine space containing all the points. For example, if the points lie on a line (and are not all the same) their affine rank is 1. If the points lie on a plane but not a line, their affine rank is 2. By convention, the empty set has affine rank -1.""" if len(args) == 0: return -1 # make sure we're genuinely points # and translate every point to the origin points = Point._normalize_dimension(*[Point(i) for i in args]) origin = points[0] points = [i - origin for i in points[1:]] m = Matrix([i.args for i in points]) # XXX fragile -- what is a better way? return m.rank(iszerofunc = lambda x: abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero) @property def ambient_dimension(self): """Number of components this point has.""" return getattr(self, '_ambient_dimension', len(self)) @classmethod def are_coplanar(cls, *points): """Return True if there exists a plane in which all the points lie. A trivial True value is returned if `len(points) < 3` or all Points are 2-dimensional. Parameters ========== A set of points Raises ====== ValueError : if less than 3 unique points are given Returns ======= boolean Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 2) >>> p2 = Point3D(2, 7, 2) >>> p3 = Point3D(0, 0, 2) >>> p4 = Point3D(1, 1, 2) >>> Point3D.are_coplanar(p1, p2, p3, p4) True >>> p5 = Point3D(0, 1, 3) >>> Point3D.are_coplanar(p1, p2, p3, p5) False """ if len(points) <= 1: return True points = cls._normalize_dimension(*[Point(i) for i in points]) # quick exit if we are in 2D if points[0].ambient_dimension == 2: return True points = list(uniq(points)) return Point.affine_rank(*points) <= 2 def distance(self, other): """The Euclidean distance between self and another GeometricEntity. Returns ======= distance : number or symbolic expression. Raises ====== TypeError : if other is not recognized as a GeometricEntity or is a GeometricEntity for which distance is not defined. See Also ======== sympy.geometry.line.Segment.length sympy.geometry.point.Point.taxicab_distance Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(1, 1), Point(4, 5) >>> l = Line((3, 1), (2, 2)) >>> p1.distance(p2) 5 >>> p1.distance(l) sqrt(2) The computed distance may be symbolic, too: >>> from sympy.abc import x, y >>> p3 = Point(x, y) >>> p3.distance((0, 0)) sqrt(x**2 + y**2) """ if not isinstance(other, GeometryEntity): try: other = Point(other, dim=self.ambient_dimension) except TypeError: raise TypeError("not recognized as a GeometricEntity: %s" % type(other)) if isinstance(other, Point): s, p = Point._normalize_dimension(self, Point(other)) return sqrt(Add(*((a - b)**2 for a, b in zip(s, p)))) distance = getattr(other, 'distance', None) if distance is None: raise TypeError("distance between Point and %s is not defined" % type(other)) return distance(self) def dot(self, p): """Return dot product of self with another Point.""" if not is_sequence(p): p = Point(p) # raise the error via Point return Add(*(a*b for a, b in zip(self, p))) def equals(self, other): """Returns whether the coordinates of self and other agree.""" # a point is equal to another point if all its components are equal if not isinstance(other, Point) or len(self) != len(other): return False return all(a.equals(b) for a, b in zip(self, other)) def _eval_evalf(self, prec=15, **options): """Evaluate the coordinates of the point. This method will, where possible, create and return a new Point where the coordinates are evaluated as floating point numbers to the precision indicated (default=15). Parameters ========== prec : int Returns ======= point : Point Examples ======== >>> from sympy import Point, Rational >>> p1 = Point(Rational(1, 2), Rational(3, 2)) >>> p1 Point2D(1/2, 3/2) >>> p1.evalf() Point2D(0.5, 1.5) """ dps = prec_to_dps(prec) coords = [x.evalf(n=dps, **options) for x in self.args] return Point(*coords, evaluate=False) def intersection(self, other): """The intersection between this point and another GeometryEntity. Parameters ========== other : GeometryEntity or sequence of coordinates Returns ======= intersection : list of Points Notes ===== The return value will either be an empty list if there is no intersection, otherwise it will contain this point. Examples ======== >>> from sympy import Point >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0) >>> p1.intersection(p2) [] >>> p1.intersection(p3) [Point2D(0, 0)] """ if not isinstance(other, GeometryEntity): other = Point(other) if isinstance(other, Point): if self == other: return [self] p1, p2 = Point._normalize_dimension(self, other) if p1 == self and p1 == p2: return [self] return [] return other.intersection(self) def is_collinear(self, *args): """Returns `True` if there exists a line that contains `self` and `points`. Returns `False` otherwise. A trivially True value is returned if no points are given. Parameters ========== args : sequence of Points Returns ======= is_collinear : boolean See Also ======== sympy.geometry.line.Line Examples ======== >>> from sympy import Point >>> from sympy.abc import x >>> p1, p2 = Point(0, 0), Point(1, 1) >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2) >>> Point.is_collinear(p1, p2, p3, p4) True >>> Point.is_collinear(p1, p2, p3, p5) False """ points = (self,) + args points = Point._normalize_dimension(*[Point(i) for i in points]) points = list(uniq(points)) return Point.affine_rank(*points) <= 1 def is_concyclic(self, *args): """Do `self` and the given sequence of points lie in a circle? Returns True if the set of points are concyclic and False otherwise. A trivial value of True is returned if there are fewer than 2 other points. Parameters ========== args : sequence of Points Returns ======= is_concyclic : boolean Examples ======== >>> from sympy import Point Define 4 points that are on the unit circle: >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1) >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True True Define a point not on that circle: >>> p = Point(1, 1) >>> p.is_concyclic(p1, p2, p3) False """ points = (self,) + args points = Point._normalize_dimension(*[Point(i) for i in points]) points = list(uniq(points)) if not Point.affine_rank(*points) <= 2: return False origin = points[0] points = [p - origin for p in points] # points are concyclic if they are coplanar and # there is a point c so that ||p_i-c|| == ||p_j-c|| for all # i and j. Rearranging this equation gives us the following # condition: the matrix `mat` must not a pivot in the last # column. mat = Matrix([list(i) + [i.dot(i)] for i in points]) rref, pivots = mat.rref() if len(origin) not in pivots: return True return False @property def is_nonzero(self): """True if any coordinate is nonzero, False if every coordinate is zero, and None if it cannot be determined.""" is_zero = self.is_zero if is_zero is None: return None return not is_zero def is_scalar_multiple(self, p): """Returns whether each coordinate of `self` is a scalar multiple of the corresponding coordinate in point p. """ s, o = Point._normalize_dimension(self, Point(p)) # 2d points happen a lot, so optimize this function call if s.ambient_dimension == 2: (x1, y1), (x2, y2) = s.args, o.args rv = (x1*y2 - x2*y1).equals(0) if rv is None: raise Undecidable(filldedent( '''Cannot determine if %s is a scalar multiple of %s''' % (s, o))) # if the vectors p1 and p2 are linearly dependent, then they must # be scalar multiples of each other m = Matrix([s.args, o.args]) return m.rank() < 2 @property def is_zero(self): """True if every coordinate is zero, False if any coordinate is not zero, and None if it cannot be determined.""" nonzero = [x.is_nonzero for x in self.args] if any(nonzero): return False if any(x is None for x in nonzero): return None return True @property def length(self): """ Treating a Point as a Line, this returns 0 for the length of a Point. Examples ======== >>> from sympy import Point >>> p = Point(0, 1) >>> p.length 0 """ return S.Zero def midpoint(self, p): """The midpoint between self and point p. Parameters ========== p : Point Returns ======= midpoint : Point See Also ======== sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy import Point >>> p1, p2 = Point(1, 1), Point(13, 5) >>> p1.midpoint(p2) Point2D(7, 3) """ s, p = Point._normalize_dimension(self, Point(p)) return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)]) @property def origin(self): """A point of all zeros of the same ambient dimension as the current point""" return Point([0]*len(self), evaluate=False) @property def orthogonal_direction(self): """Returns a non-zero point that is orthogonal to the line containing `self` and the origin. Examples ======== >>> from sympy import Line, Point >>> a = Point(1, 2, 3) >>> a.orthogonal_direction Point3D(-2, 1, 0) >>> b = _ >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin)) True """ dim = self.ambient_dimension # if a coordinate is zero, we can put a 1 there and zeros elsewhere if self[0].is_zero: return Point([1] + (dim - 1)*[0]) if self[1].is_zero: return Point([0,1] + (dim - 2)*[0]) # if the first two coordinates aren't zero, we can create a non-zero # orthogonal vector by swapping them, negating one, and padding with zeros return Point([-self[1], self[0]] + (dim - 2)*[0]) @staticmethod def project(a, b): """Project the point `a` onto the line between the origin and point `b` along the normal direction. Parameters ========== a : Point b : Point Returns ======= p : Point See Also ======== sympy.geometry.line.LinearEntity.projection Examples ======== >>> from sympy import Line, Point >>> a = Point(1, 2) >>> b = Point(2, 5) >>> z = a.origin >>> p = Point.project(a, b) >>> Line(p, a).is_perpendicular(Line(p, b)) True >>> Point.is_collinear(z, p, b) True """ a, b = Point._normalize_dimension(Point(a), Point(b)) if b.is_zero: raise ValueError("Cannot project to the zero vector.") return b*(a.dot(b) / b.dot(b)) def taxicab_distance(self, p): """The Taxicab Distance from self to point p. Returns the sum of the horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= taxicab_distance : The sum of the horizontal and vertical distances to point p. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy import Point >>> p1, p2 = Point(1, 1), Point(4, 5) >>> p1.taxicab_distance(p2) 7 """ s, p = Point._normalize_dimension(self, Point(p)) return Add(*(abs(a - b) for a, b in zip(s, p))) def canberra_distance(self, p): """The Canberra Distance from self to point p. Returns the weighted sum of horizontal and vertical distances to point p. Parameters ========== p : Point Returns ======= canberra_distance : The weighted sum of horizontal and vertical distances to point p. The weight used is the sum of absolute values of the coordinates. Examples ======== >>> from sympy import Point >>> p1, p2 = Point(1, 1), Point(3, 3) >>> p1.canberra_distance(p2) 1 >>> p1, p2 = Point(0, 0), Point(3, 3) >>> p1.canberra_distance(p2) 2 Raises ====== ValueError when both vectors are zero. See Also ======== sympy.geometry.point.Point.distance """ s, p = Point._normalize_dimension(self, Point(p)) if self.is_zero and p.is_zero: raise ValueError("Cannot project to the zero vector.") return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p))) @property def unit(self): """Return the Point that is in the same direction as `self` and a distance of 1 from the origin""" return self / abs(self) class Point2D(Point): """A point in a 2-dimensional Euclidean space. Parameters ========== coords : sequence of 2 coordinate values. Attributes ========== x y length Raises ====== TypeError When trying to add or subtract points with different dimensions. When trying to create a point with more than two dimensions. When `intersection` is called with object other than a Point. See Also ======== sympy.geometry.line.Segment : Connects two Points Examples ======== >>> from sympy import Point2D >>> from sympy.abc import x >>> Point2D(1, 2) Point2D(1, 2) >>> Point2D([1, 2]) Point2D(1, 2) >>> Point2D(0, x) Point2D(0, x) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point2D(0.5, 0.25) Point2D(1/2, 1/4) >>> Point2D(0.5, 0.25, evaluate=False) Point2D(0.5, 0.25) """ _ambient_dimension = 2 def __new__(cls, *args, _nocheck=False, **kwargs): if not _nocheck: kwargs['dim'] = 2 args = Point(*args, **kwargs) return GeometryEntity.__new__(cls, *args) def __contains__(self, item): return item == self @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ return (self.x, self.y, self.x, self.y) def rotate(self, angle, pt=None): """Rotate ``angle`` radians counterclockwise about Point ``pt``. See Also ======== translate, scale Examples ======== >>> from sympy import Point2D, pi >>> t = Point2D(1, 0) >>> t.rotate(pi/2) Point2D(0, 1) >>> t.rotate(pi/2, (2, 0)) Point2D(2, -1) """ c = cos(angle) s = sin(angle) rv = self if pt is not None: pt = Point(pt, dim=2) rv -= pt x, y = rv.args rv = Point(c*x - s*y, s*x + c*y) if pt is not None: rv += pt return rv def scale(self, x=1, y=1, pt=None): """Scale the coordinates of the Point by multiplying by ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- and then adding ``pt`` back again (i.e. ``pt`` is the point of reference for the scaling). See Also ======== rotate, translate Examples ======== >>> from sympy import Point2D >>> t = Point2D(1, 1) >>> t.scale(2) Point2D(2, 1) >>> t.scale(2, 2) Point2D(2, 2) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) return Point(self.x*x, self.y*y) def transform(self, matrix): """Return the point after applying the transformation described by the 3x3 Matrix, ``matrix``. See Also ======== sympy.geometry.point.Point2D.rotate sympy.geometry.point.Point2D.scale sympy.geometry.point.Point2D.translate """ if not (matrix.is_Matrix and matrix.shape == (3, 3)): raise ValueError("matrix must be a 3x3 matrix") x, y = self.args return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2]) def translate(self, x=0, y=0): """Shift the Point by adding x and y to the coordinates of the Point. See Also ======== sympy.geometry.point.Point2D.rotate, scale Examples ======== >>> from sympy import Point2D >>> t = Point2D(0, 1) >>> t.translate(2) Point2D(2, 1) >>> t.translate(2, 2) Point2D(2, 3) >>> t + Point2D(2, 2) Point2D(2, 3) """ return Point(self.x + x, self.y + y) @property def coordinates(self): """ Returns the two coordinates of the Point. Examples ======== >>> from sympy import Point2D >>> p = Point2D(0, 1) >>> p.coordinates (0, 1) """ return self.args @property def x(self): """ Returns the X coordinate of the Point. Examples ======== >>> from sympy import Point2D >>> p = Point2D(0, 1) >>> p.x 0 """ return self.args[0] @property def y(self): """ Returns the Y coordinate of the Point. Examples ======== >>> from sympy import Point2D >>> p = Point2D(0, 1) >>> p.y 1 """ return self.args[1] class Point3D(Point): """A point in a 3-dimensional Euclidean space. Parameters ========== coords : sequence of 3 coordinate values. Attributes ========== x y z length Raises ====== TypeError When trying to add or subtract points with different dimensions. When `intersection` is called with object other than a Point. Examples ======== >>> from sympy import Point3D >>> from sympy.abc import x >>> Point3D(1, 2, 3) Point3D(1, 2, 3) >>> Point3D([1, 2, 3]) Point3D(1, 2, 3) >>> Point3D(0, x, 3) Point3D(0, x, 3) Floats are automatically converted to Rational unless the evaluate flag is False: >>> Point3D(0.5, 0.25, 2) Point3D(1/2, 1/4, 2) >>> Point3D(0.5, 0.25, 3, evaluate=False) Point3D(0.5, 0.25, 3) """ _ambient_dimension = 3 def __new__(cls, *args, _nocheck=False, **kwargs): if not _nocheck: kwargs['dim'] = 3 args = Point(*args, **kwargs) return GeometryEntity.__new__(cls, *args) def __contains__(self, item): return item == self @staticmethod def are_collinear(*points): """Is a sequence of points collinear? Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise. Parameters ========== points : sequence of Point Returns ======= are_collinear : boolean See Also ======== sympy.geometry.line.Line3D Examples ======== >>> from sympy import Point3D >>> from sympy.abc import x >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6) >>> Point3D.are_collinear(p1, p2, p3, p4) True >>> Point3D.are_collinear(p1, p2, p3, p5) False """ return Point.is_collinear(*points) def direction_cosine(self, point): """ Gives the direction cosine between 2 points Parameters ========== p : Point3D Returns ======= list Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 3) >>> p1.direction_cosine(Point3D(2, 3, 5)) [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3] """ a = self.direction_ratio(point) b = sqrt(Add(*(i**2 for i in a))) return [(point.x - self.x) / b,(point.y - self.y) / b, (point.z - self.z) / b] def direction_ratio(self, point): """ Gives the direction ratio between 2 points Parameters ========== p : Point3D Returns ======= list Examples ======== >>> from sympy import Point3D >>> p1 = Point3D(1, 2, 3) >>> p1.direction_ratio(Point3D(2, 3, 5)) [1, 1, 2] """ return [(point.x - self.x),(point.y - self.y),(point.z - self.z)] def intersection(self, other): """The intersection between this point and another GeometryEntity. Parameters ========== other : GeometryEntity or sequence of coordinates Returns ======= intersection : list of Points Notes ===== The return value will either be an empty list if there is no intersection, otherwise it will contain this point. Examples ======== >>> from sympy import Point3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0) >>> p1.intersection(p2) [] >>> p1.intersection(p3) [Point3D(0, 0, 0)] """ if not isinstance(other, GeometryEntity): other = Point(other, dim=3) if isinstance(other, Point3D): if self == other: return [self] return [] return other.intersection(self) def scale(self, x=1, y=1, z=1, pt=None): """Scale the coordinates of the Point by multiplying by ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) -- and then adding ``pt`` back again (i.e. ``pt`` is the point of reference for the scaling). See Also ======== translate Examples ======== >>> from sympy import Point3D >>> t = Point3D(1, 1, 1) >>> t.scale(2) Point3D(2, 1, 1) >>> t.scale(2, 2) Point3D(2, 2, 1) """ if pt: pt = Point3D(pt) return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args) return Point3D(self.x*x, self.y*y, self.z*z) def transform(self, matrix): """Return the point after applying the transformation described by the 4x4 Matrix, ``matrix``. See Also ======== sympy.geometry.point.Point3D.scale sympy.geometry.point.Point3D.translate """ if not (matrix.is_Matrix and matrix.shape == (4, 4)): raise ValueError("matrix must be a 4x4 matrix") x, y, z = self.args m = Transpose(matrix) return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3]) def translate(self, x=0, y=0, z=0): """Shift the Point by adding x and y to the coordinates of the Point. See Also ======== scale Examples ======== >>> from sympy import Point3D >>> t = Point3D(0, 1, 1) >>> t.translate(2) Point3D(2, 1, 1) >>> t.translate(2, 2) Point3D(2, 3, 1) >>> t + Point3D(2, 2, 2) Point3D(2, 3, 3) """ return Point3D(self.x + x, self.y + y, self.z + z) @property def coordinates(self): """ Returns the three coordinates of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 2) >>> p.coordinates (0, 1, 2) """ return self.args @property def x(self): """ Returns the X coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 3) >>> p.x 0 """ return self.args[0] @property def y(self): """ Returns the Y coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 2) >>> p.y 1 """ return self.args[1] @property def z(self): """ Returns the Z coordinate of the Point. Examples ======== >>> from sympy import Point3D >>> p = Point3D(0, 1, 1) >>> p.z 1 """ return self.args[2]