""" Module for the DDM class. The DDM class is an internal representation used by DomainMatrix. The letters DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix representation. Basic usage: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A.shape (2, 2) >>> A [[0, 1], [-1, 0]] >>> type(A) >>> A @ A [[-1, 0], [0, -1]] The ddm_* functions are designed to operate on DDM as well as on an ordinary list of lists: >>> from sympy.polys.matrices.dense import ddm_idet >>> ddm_idet(A, QQ) 1 >>> ddm_idet([[0, 1], [-1, 0]], QQ) 1 >>> A [[-1, 0], [0, -1]] Note that ddm_idet modifies the input matrix in-place. It is recommended to use the DDM.det method as a friendlier interface to this instead which takes care of copying the matrix: >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> B.det() 1 Normally DDM would not be used directly and is just part of the internal representation of DomainMatrix which adds further functionality including e.g. unifying domains. The dense format used by DDM is a list of lists of elements e.g. the 2x2 identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass of list and its list items are plain lists. Elements are accessed as e.g. ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the jth column of that row. Subclassing list makes e.g. iteration and indexing very efficient. We do not override __getitem__ because it would lose that benefit. The core routines are implemented by the ddm_* functions defined in dense.py. Those functions are intended to be able to operate on a raw list-of-lists representation of matrices with most functions operating in-place. The DDM class takes care of copying etc and also stores a Domain object associated with its elements. This makes it possible to implement things like A + B with domain checking and also shape checking so that the list of lists representation is friendlier. """ from itertools import chain from .exceptions import DMBadInputError, DMShapeError, DMDomainError from .dense import ( ddm_transpose, ddm_iadd, ddm_isub, ddm_ineg, ddm_imul, ddm_irmul, ddm_imatmul, ddm_irref, ddm_idet, ddm_iinv, ddm_ilu_split, ddm_ilu_solve, ddm_berk, ) class DDM(list): """Dense matrix based on polys domain elements This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, *, **. """ fmt = 'dense' def __init__(self, rowslist, shape, domain): super().__init__(rowslist) self.shape = self.rows, self.cols = m, n = shape self.domain = domain if not (len(self) == m and all(len(row) == n for row in self)): raise DMBadInputError("Inconsistent row-list/shape") def getitem(self, i, j): return self[i][j] def setitem(self, i, j, value): self[i][j] = value def extract_slice(self, slice1, slice2): ddm = [row[slice2] for row in self[slice1]] rows = len(ddm) cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2]) return DDM(ddm, (rows, cols), self.domain) def extract(self, rows, cols): ddm = [] for i in rows: rowi = self[i] ddm.append([rowi[j] for j in cols]) return DDM(ddm, (len(rows), len(cols)), self.domain) def to_list(self): return list(self) def to_list_flat(self): flat = [] for row in self: flat.extend(row) return flat def flatiter(self): return chain.from_iterable(self) def flat(self): items = [] for row in self: items.extend(row) return items def to_dok(self): return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)} def to_ddm(self): return self def to_sdm(self): return SDM.from_list(self, self.shape, self.domain) def convert_to(self, K): Kold = self.domain if K == Kold: return self.copy() rows = ([K.convert_from(e, Kold) for e in row] for row in self) return DDM(rows, self.shape, K) def __str__(self): rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self] return '[%s]' % ', '.join(rowsstr) def __repr__(self): cls = type(self).__name__ rows = list.__repr__(self) return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) def __eq__(self, other): if not isinstance(other, DDM): return False return (super().__eq__(other) and self.domain == other.domain) def __ne__(self, other): return not self.__eq__(other) @classmethod def zeros(cls, shape, domain): z = domain.zero m, n = shape rowslist = ([z] * n for _ in range(m)) return DDM(rowslist, shape, domain) @classmethod def ones(cls, shape, domain): one = domain.one m, n = shape rowlist = ([one] * n for _ in range(m)) return DDM(rowlist, shape, domain) @classmethod def eye(cls, size, domain): one = domain.one ddm = cls.zeros((size, size), domain) for i in range(size): ddm[i][i] = one return ddm def copy(self): copyrows = (row[:] for row in self) return DDM(copyrows, self.shape, self.domain) def transpose(self): rows, cols = self.shape if rows: ddmT = ddm_transpose(self) else: ddmT = [[]] * cols return DDM(ddmT, (cols, rows), self.domain) def __add__(a, b): if not isinstance(b, DDM): return NotImplemented return a.add(b) def __sub__(a, b): if not isinstance(b, DDM): return NotImplemented return a.sub(b) def __neg__(a): return a.neg() def __mul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __rmul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __matmul__(a, b): if isinstance(b, DDM): return a.matmul(b) else: return NotImplemented @classmethod def _check(cls, a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) def add(a, b): """a + b""" a._check(a, '+', b, a.shape, b.shape) c = a.copy() ddm_iadd(c, b) return c def sub(a, b): """a - b""" a._check(a, '-', b, a.shape, b.shape) c = a.copy() ddm_isub(c, b) return c def neg(a): """-a""" b = a.copy() ddm_ineg(b) return b def mul(a, b): c = a.copy() ddm_imul(c, b) return c def rmul(a, b): c = a.copy() ddm_irmul(c, b) return c def matmul(a, b): """a @ b (matrix product)""" m, o = a.shape o2, n = b.shape a._check(a, '*', b, o, o2) c = a.zeros((m, n), a.domain) ddm_imatmul(c, a, b) return c def mul_elementwise(a, b): assert a.shape == b.shape assert a.domain == b.domain c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)] return DDM(c, a.shape, a.domain) def hstack(A, *B): """Horizontally stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) [[1, 2, 5, 6], [3, 4, 7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkrows == rows assert Bk.domain == domain cols += Bkcols for i, Bki in enumerate(Bk): Anew[i].extend(Bki) return DDM(Anew, (rows, cols), A.domain) def vstack(A, *B): """Vertically stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) [[1, 2], [3, 4], [5, 6], [7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkcols == cols assert Bk.domain == domain rows += Bkrows Anew.extend(Bk.copy()) return DDM(Anew, (rows, cols), A.domain) def applyfunc(self, func, domain): elements = (list(map(func, row)) for row in self) return DDM(elements, self.shape, domain) def scc(a): """Strongly connected components of a square matrix *a*. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.scc() [[0], [1]] See also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.scc """ return a.to_sdm().scc() def rref(a): """Reduced-row echelon form of a and list of pivots""" b = a.copy() K = a.domain partial_pivot = K.is_RealField or K.is_ComplexField pivots = ddm_irref(b, _partial_pivot=partial_pivot) return b, pivots def nullspace(a): rref, pivots = a.rref() rows, cols = a.shape domain = a.domain basis = [] nonpivots = [] for i in range(cols): if i in pivots: continue nonpivots.append(i) vec = [domain.one if i == j else domain.zero for j in range(cols)] for ii, jj in enumerate(pivots): vec[jj] -= rref[ii][i] basis.append(vec) return DDM(basis, (len(basis), cols), domain), nonpivots def particular(a): return a.to_sdm().particular().to_ddm() def det(a): """Determinant of a""" m, n = a.shape if m != n: raise DMShapeError("Determinant of non-square matrix") b = a.copy() K = b.domain deta = ddm_idet(b, K) return deta def inv(a): """Inverse of a""" m, n = a.shape if m != n: raise DMShapeError("Determinant of non-square matrix") ainv = a.copy() K = a.domain ddm_iinv(ainv, a, K) return ainv def lu(a): """L, U decomposition of a""" m, n = a.shape K = a.domain U = a.copy() L = a.eye(m, K) swaps = ddm_ilu_split(L, U, K) return L, U, swaps def lu_solve(a, b): """x where a*x = b""" m, n = a.shape m2, o = b.shape a._check(a, 'lu_solve', b, m, m2) L, U, swaps = a.lu() x = a.zeros((n, o), a.domain) ddm_ilu_solve(x, L, U, swaps, b) return x def charpoly(a): """Coefficients of characteristic polynomial of a""" K = a.domain m, n = a.shape if m != n: raise DMShapeError("Charpoly of non-square matrix") vec = ddm_berk(a, K) coeffs = [vec[i][0] for i in range(n+1)] return coeffs def is_zero_matrix(self): """ Says whether this matrix has all zero entries. """ zero = self.domain.zero return all(Mij == zero for Mij in self.flatiter()) def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i]) def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:]) from .sdm import SDM