from sympy.calculus.accumulationbounds import AccumBounds from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul from sympy.core.exprtools import factor_terms from sympy.core.numbers import Float from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.special.gamma_functions import gamma from sympy.polys import PolynomialError, factor from sympy.series.order import Order from sympy.simplify.powsimp import powsimp from sympy.simplify.ratsimp import ratsimp from sympy.simplify.simplify import nsimplify, together from .gruntz import gruntz def limit(e, z, z0, dir="+"): """Computes the limit of ``e(z)`` at the point ``z0``. Parameters ========== e : expression, the limit of which is to be taken z : symbol representing the variable in the limit. Other symbols are treated as constants. Multivariate limits are not supported. z0 : the value toward which ``z`` tends. Can be any expression, including ``oo`` and ``-oo``. dir : string, optional (default: "+") The limit is bi-directional if ``dir="+-"``, from the right (z->z0+) if ``dir="+"``, and from the left (z->z0-) if ``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). Examples ======== >>> from sympy import limit, sin, oo >>> from sympy.abc import x >>> limit(sin(x)/x, x, 0) 1 >>> limit(1/x, x, 0) # default dir='+' oo >>> limit(1/x, x, 0, dir="-") -oo >>> limit(1/x, x, 0, dir='+-') zoo >>> limit(1/x, x, oo) 0 Notes ===== First we try some heuristics for easy and frequent cases like "x", "1/x", "x**2" and similar, so that it's fast. For all other cases, we use the Gruntz algorithm (see the gruntz() function). See Also ======== limit_seq : returns the limit of a sequence. """ return Limit(e, z, z0, dir).doit(deep=False) def heuristics(e, z, z0, dir): """Computes the limit of an expression term-wise. Parameters are the same as for the ``limit`` function. Works with the arguments of expression ``e`` one by one, computing the limit of each and then combining the results. This approach works only for simple limits, but it is fast. """ rv = None if abs(z0) is S.Infinity: rv = limit(e.subs(z, 1/z), z, S.Zero, "+" if z0 is S.Infinity else "-") if isinstance(rv, Limit): return elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function: r = [] for a in e.args: l = limit(a, z, z0, dir) if l.has(S.Infinity) and l.is_finite is None: if isinstance(e, Add): m = factor_terms(e) if not isinstance(m, Mul): # try together m = together(m) if not isinstance(m, Mul): # try factor if the previous methods failed m = factor(e) if isinstance(m, Mul): return heuristics(m, z, z0, dir) return return elif isinstance(l, Limit): return elif l is S.NaN: return else: r.append(l) if r: rv = e.func(*r) if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r): r2 = [] e2 = [] for ii in range(len(r)): if isinstance(r[ii], AccumBounds): r2.append(r[ii]) else: e2.append(e.args[ii]) if len(e2) > 0: e3 = Mul(*e2).simplify() l = limit(e3, z, z0, dir) rv = l * Mul(*r2) if rv is S.NaN: try: rat_e = ratsimp(e) except PolynomialError: return if rat_e is S.NaN or rat_e == e: return return limit(rat_e, z, z0, dir) return rv class Limit(Expr): """Represents an unevaluated limit. Examples ======== >>> from sympy import Limit, sin >>> from sympy.abc import x >>> Limit(sin(x)/x, x, 0) Limit(sin(x)/x, x, 0) >>> Limit(1/x, x, 0, dir="-") Limit(1/x, x, 0, dir='-') """ def __new__(cls, e, z, z0, dir="+"): e = sympify(e) z = sympify(z) z0 = sympify(z0) if z0 is S.Infinity: dir = "-" elif z0 is S.NegativeInfinity: dir = "+" if(z0.has(z)): raise NotImplementedError("Limits approaching a variable point are" " not supported (%s -> %s)" % (z, z0)) if isinstance(dir, str): dir = Symbol(dir) elif not isinstance(dir, Symbol): raise TypeError("direction must be of type basestring or " "Symbol, not %s" % type(dir)) if str(dir) not in ('+', '-', '+-'): raise ValueError("direction must be one of '+', '-' " "or '+-', not %s" % dir) obj = Expr.__new__(cls) obj._args = (e, z, z0, dir) return obj @property def free_symbols(self): e = self.args[0] isyms = e.free_symbols isyms.difference_update(self.args[1].free_symbols) isyms.update(self.args[2].free_symbols) return isyms def pow_heuristics(self, e): _, z, z0, _ = self.args b1, e1 = e.base, e.exp if not b1.has(z): res = limit(e1*log(b1), z, z0) return exp(res) ex_lim = limit(e1, z, z0) base_lim = limit(b1, z, z0) if base_lim is S.One: if ex_lim in (S.Infinity, S.NegativeInfinity): res = limit(e1*(b1 - 1), z, z0) return exp(res) if base_lim is S.NegativeInfinity and ex_lim is S.Infinity: return S.ComplexInfinity def doit(self, **hints): """Evaluates the limit. Parameters ========== deep : bool, optional (default: True) Invoke the ``doit`` method of the expressions involved before taking the limit. hints : optional keyword arguments To be passed to ``doit`` methods; only used if deep is True. """ e, z, z0, dir = self.args if z0 is S.ComplexInfinity: raise NotImplementedError("Limits at complex " "infinity are not implemented") if hints.get('deep', True): e = e.doit(**hints) z = z.doit(**hints) z0 = z0.doit(**hints) if e == z: return z0 if not e.has(z): return e if z0 is S.NaN: return S.NaN if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN): return self if e.is_Order: return Order(limit(e.expr, z, z0), *e.args[1:]) cdir = 0 if str(dir) == "+": cdir = 1 elif str(dir) == "-": cdir = -1 def set_signs(expr): if not expr.args: return expr newargs = tuple(set_signs(arg) for arg in expr.args) if newargs != expr.args: expr = expr.func(*newargs) abs_flag = isinstance(expr, Abs) sign_flag = isinstance(expr, sign) if abs_flag or sign_flag: sig = limit(expr.args[0], z, z0, dir) if sig.is_zero: sig = limit(1/expr.args[0], z, z0, dir) if sig.is_extended_real: if (sig < 0) == True: return -expr.args[0] if abs_flag else S.NegativeOne elif (sig > 0) == True: return expr.args[0] if abs_flag else S.One return expr if e.has(Float): # Convert floats like 0.5 to exact SymPy numbers like S.Half, to # prevent rounding errors which can lead to unexpected execution # of conditional blocks that work on comparisons # Also see comments in https://github.com/sympy/sympy/issues/19453 e = nsimplify(e) e = set_signs(e) if e.is_meromorphic(z, z0): if abs(z0) is S.Infinity: newe = e.subs(z, 1/z) # cdir changes sign as oo- should become 0+ cdir = -cdir else: newe = e.subs(z, z + z0) try: coeff, ex = newe.leadterm(z, cdir=cdir) except ValueError: pass else: if ex > 0: return S.Zero elif ex == 0: return coeff if cdir == 1 or not(int(ex) & 1): return S.Infinity*sign(coeff) elif cdir == -1: return S.NegativeInfinity*sign(coeff) else: return S.ComplexInfinity if abs(z0) is S.Infinity: if e.is_Mul: e = factor_terms(e) newe = e.subs(z, 1/z) # cdir changes sign as oo- should become 0+ cdir = -cdir else: newe = e.subs(z, z + z0) try: coeff, ex = newe.leadterm(z, cdir=cdir) except (ValueError, NotImplementedError, PoleError): # The NotImplementedError catching is for custom functions e = powsimp(e) if e.is_Pow: r = self.pow_heuristics(e) if r is not None: return r else: if coeff.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return self if not coeff.has(z): if ex.is_positive: return S.Zero elif ex == 0: return coeff elif ex.is_negative: if ex.is_integer: if cdir == 1 or ex.is_even: return S.Infinity*sign(coeff) elif cdir == -1: return S.NegativeInfinity*sign(coeff) else: return S.ComplexInfinity else: if cdir == 1: return S.Infinity*sign(coeff) elif cdir == -1: return S.Infinity*sign(coeff)*S.NegativeOne**ex else: return S.ComplexInfinity # gruntz fails on factorials but works with the gamma function # If no factorial term is present, e should remain unchanged. # factorial is defined to be zero for negative inputs (which # differs from gamma) so only rewrite for positive z0. if z0.is_extended_positive: e = e.rewrite(factorial, gamma) l = None try: if str(dir) == '+-': r = gruntz(e, z, z0, '+') l = gruntz(e, z, z0, '-') if l != r: raise ValueError("The limit does not exist since " "left hand limit = %s and right hand limit = %s" % (l, r)) else: r = gruntz(e, z, z0, dir) if r is S.NaN or l is S.NaN: raise PoleError() except (PoleError, ValueError): if l is not None: raise r = heuristics(e, z, z0, dir) if r is None: return self return r