from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.polytools import gcd from sympy.sets.sets import Complement from sympy.core import Basic, Tuple, diff, expand, Eq, Integer from sympy.core.sorting import ordered from sympy.core.symbol import _symbol from sympy.solvers import solveset, nonlinsolve, diophantine from sympy.polys import total_degree from sympy.geometry import Point from sympy.ntheory.factor_ import core class ImplicitRegion(Basic): """ Represents an implicit region in space. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x, y, z, t >>> from sympy.vector import ImplicitRegion >>> ImplicitRegion((x, y), x**2 + y**2 - 4) ImplicitRegion((x, y), x**2 + y**2 - 4) >>> ImplicitRegion((x, y), Eq(y*x, 1)) ImplicitRegion((x, y), x*y - 1) >>> parabola = ImplicitRegion((x, y), y**2 - 4*x) >>> parabola.degree 2 >>> parabola.equation -4*x + y**2 >>> parabola.rational_parametrization(t) (4/t**2, 4/t) >>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2)) >>> r.variables (x, y, z) >>> r.singular_points() {(0, 0, 0)} >>> r.regular_point() (-10, -10, 200) Parameters ========== variables : tuple to map variables in implicit equation to base scalars. equation : An expression or Eq denoting the implicit equation of the region. """ def __new__(cls, variables, equation): if not isinstance(variables, Tuple): variables = Tuple(*variables) if isinstance(equation, Eq): equation = equation.lhs - equation.rhs return super().__new__(cls, variables, equation) @property def variables(self): return self.args[0] @property def equation(self): return self.args[1] @property def degree(self): return total_degree(self.equation) def regular_point(self): """ Returns a point on the implicit region. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.vector import ImplicitRegion >>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16) >>> circle.regular_point() (-2, -1) >>> parabola = ImplicitRegion((x, y), x**2 - 4*y) >>> parabola.regular_point() (0, 0) >>> r = ImplicitRegion((x, y, z), (x + y + z)**4) >>> r.regular_point() (-10, -10, 20) References ========== - Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz, J. Kepler Universitat Linz, 1996. Availaible: https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf """ equation = self.equation if len(self.variables) == 1: return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],) elif len(self.variables) == 2: if self.degree == 2: coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation) if b**2 == 4*a*c: x_reg, y_reg = self._regular_point_parabola(*coeffs) else: x_reg, y_reg = self._regular_point_ellipse(*coeffs) return x_reg, y_reg if len(self.variables) == 3: x, y, z = self.variables for x_reg in range(-10, 10): for y_reg in range(-10, 10): if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty: return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0]) if len(self.singular_points()) != 0: return list[self.singular_points()][0] raise NotImplementedError() def _regular_point_parabola(self, a, b, c, d, e, f): ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0) if not ok: raise ValueError("Rational Point on the conic does not exist") if a != 0: d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2) if d_dash != 0: y_reg = -f_dash/d_dash x_reg = -(d + b*y_reg)/(2*a) else: ok = False elif c != 0: d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2) if d_dash != 0: x_reg = -f_dash/d_dash y_reg = -(e + b*x_reg)/(2*c) else: ok = False if ok: return x_reg, y_reg else: raise ValueError("Rational Point on the conic does not exist") def _regular_point_ellipse(self, a, b, c, d, e, f): D = 4*a*c - b**2 ok = D if not ok: raise ValueError("Rational Point on the conic does not exist") if a == 0 and c == 0: K = -1 L = 4*(d*e - b*f) elif c != 0: K = D L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f else: K = D L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f ok = L != 0 and not(K > 0 and L < 0) if not ok: raise ValueError("Rational Point on the conic does not exist") K = Rational(K).limit_denominator(10**12) L = Rational(L).limit_denominator(10**12) k1, k2 = K.p, K.q l1, l2 = L.p, L.q g = gcd(k2, l2) a1 = (l2*k2)/g b1 = (k1*l2)/g c1 = -(l1*k2)/g a2 = sign(a1)*core(abs(a1), 2) r1 = sqrt(a1/a2) b2 = sign(b1)*core(abs(b1), 2) r2 = sqrt(b1/b2) c2 = sign(c1)*core(abs(c1), 2) r3 = sqrt(c1/c2) g = gcd(gcd(a2, b2), c2) a2 = a2/g b2 = b2/g c2 = c2/g g1 = gcd(a2, b2) a2 = a2/g1 b2 = b2/g1 c2 = c2*g1 g2 = gcd(a2,c2) a2 = a2/g2 b2 = b2*g2 c2 = c2/g2 g3 = gcd(b2, c2) a2 = a2*g3 b2 = b2/g3 c2 = c2/g3 x, y, z = symbols("x y z") eq = a2*x**2 + b2*y**2 + c2*z**2 solutions = diophantine(eq) if len(solutions) == 0: raise ValueError("Rational Point on the conic does not exist") flag = False for sol in solutions: syms = Tuple(*sol).free_symbols rep = {s: 3 for s in syms} sol_z = sol[2] if sol_z == 0: flag = True continue if not isinstance(sol_z, (int, Integer)): syms_z = sol_z.free_symbols if len(syms_z) == 1: p = next(iter(syms_z)) p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers)) rep[p] = next(iter(p_values)) if len(syms_z) == 2: p, q = list(ordered(syms_z)) for i in S.Integers: subs_sol_z = sol_z.subs(p, i) q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers)) if not q_values.is_empty: rep[p] = i rep[q] = next(iter(q_values)) break if len(syms) != 0: x, y, z = tuple(s.subs(rep) for s in sol) else: x, y, z = sol flag = False break if flag: raise ValueError("Rational Point on the conic does not exist") x = (x*g3)/r1 y = (y*g2)/r2 z = (z*g1)/r3 x = x/z y = y/z if a == 0 and c == 0: x_reg = (x + y - 2*e)/(2*b) y_reg = (x - y - 2*d)/(2*b) elif c != 0: x_reg = (x - 2*d*c + b*e)/K y_reg = (y - b*x_reg - e)/(2*c) else: y_reg = (x - 2*e*a + b*d)/K x_reg = (y - b*y_reg - d)/(2*a) return x_reg, y_reg def singular_points(self): """ Returns a set of singular points of the region. The singular points are those points on the region where all partial derivatives vanish. Examples ======== >>> from sympy.abc import x, y >>> from sympy.vector import ImplicitRegion >>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x) >>> I.singular_points() {(1, 1)} """ eq_list = [self.equation] for var in self.variables: eq_list += [diff(self.equation, var)] return nonlinsolve(eq_list, list(self.variables)) def multiplicity(self, point): """ Returns the multiplicity of a singular point on the region. A singular point (x,y) of region is said to be of multiplicity m if all the partial derivatives off to order m - 1 vanish there. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.vector import ImplicitRegion >>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4) >>> I.singular_points() {(0, 0, 0)} >>> I.multiplicity((0, 0, 0)) 2 """ if isinstance(point, Point): point = point.args modified_eq = self.equation for i, var in enumerate(self.variables): modified_eq = modified_eq.subs(var, var + point[i]) modified_eq = expand(modified_eq) if len(modified_eq.args) != 0: terms = modified_eq.args m = min([total_degree(term) for term in terms]) else: terms = modified_eq m = total_degree(terms) return m def rational_parametrization(self, parameters=('t', 's'), reg_point=None): """ Returns the rational parametrization of implict region. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x, y, z, s, t >>> from sympy.vector import ImplicitRegion >>> parabola = ImplicitRegion((x, y), y**2 - 4*x) >>> parabola.rational_parametrization() (4/t**2, 4/t) >>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4)) >>> circle.rational_parametrization() (4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2) >>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2) >>> I.rational_parametrization() (t**2 - 1, t*(t**2 - 1)) >>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2) >>> cubic_curve.rational_parametrization(parameters=(t)) (t**2 - 1, t*(t**2 - 1)) >>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4) >>> sphere.rational_parametrization(parameters=(t, s)) (-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1)) For some conics, regular_points() is unable to find a point on curve. To calulcate the parametric representation in such cases, user need to determine a point on the region and pass it using reg_point. >>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2) >>> c.rational_parametrization(reg_point=(3/4, 0)) (0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1)) References ========== - Christoph M. Hoffmann, "Conversion Methods between Parametric and Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech """ equation = self.equation degree = self.degree if degree == 1: if len(self.variables) == 1: return (equation,) elif len(self.variables) == 2: x, y = self.variables y_par = list(solveset(equation, y))[0] return x, y_par else: raise NotImplementedError() point = () # Finding the (n - 1) fold point of the monoid of degree if degree == 2: # For degree 2 curves, either a regular point or a singular point can be used. if reg_point is not None: # Using point provided by the user as regular point point = reg_point else: if len(self.singular_points()) != 0: point = list(self.singular_points())[0] else: point = self.regular_point() if len(self.singular_points()) != 0: singular_points = self.singular_points() for spoint in singular_points: syms = Tuple(*spoint).free_symbols rep = {s: 2 for s in syms} if len(syms) != 0: spoint = tuple(s.subs(rep) for s in spoint) if self.multiplicity(spoint) == degree - 1: point = spoint break if len(point) == 0: # The region in not a monoid raise NotImplementedError() modified_eq = equation # Shifting the region such that fold point moves to origin for i, var in enumerate(self.variables): modified_eq = modified_eq.subs(var, var + point[i]) modified_eq = expand(modified_eq) hn = hn_1 = 0 for term in modified_eq.args: if total_degree(term) == degree: hn += term else: hn_1 += term hn_1 = -1*hn_1 if not isinstance(parameters, tuple): parameters = (parameters,) if len(self.variables) == 2: parameter1 = parameters[0] if parameter1 == 's': # To avoid name conflict between parameters s = _symbol('s_', real=True) else: s = _symbol('s', real=True) t = _symbol(parameter1, real=True) hn = hn.subs({self.variables[0]: s, self.variables[1]: t}) hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t}) x_par = (s*(hn_1/hn)).subs(s, 1) + point[0] y_par = (t*(hn_1/hn)).subs(s, 1) + point[1] return x_par, y_par elif len(self.variables) == 3: parameter1, parameter2 = parameters if 'r' in parameters: # To avoid name conflict between parameters r = _symbol('r_', real=True) else: r = _symbol('r', real=True) s = _symbol(parameter2, real=True) t = _symbol(parameter1, real=True) hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t}) hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t}) x_par = (r*(hn_1/hn)).subs(r, 1) + point[0] y_par = (s*(hn_1/hn)).subs(r, 1) + point[1] z_par = (t*(hn_1/hn)).subs(r, 1) + point[2] return x_par, y_par, z_par raise NotImplementedError() def conic_coeff(variables, equation): if total_degree(equation) != 2: raise ValueError() x = variables[0] y = variables[1] equation = expand(equation) a = equation.coeff(x**2) b = equation.coeff(x*y) c = equation.coeff(y**2) d = equation.coeff(x, 1).coeff(y, 0) e = equation.coeff(y, 1).coeff(x, 0) f = equation.coeff(x, 0).coeff(y, 0) return a, b, c, d, e, f