123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858 |
- from __future__ import absolute_import
- from .Errors import CompileError, error
- from . import ExprNodes
- from .ExprNodes import IntNode, NameNode, AttributeNode
- from . import Options
- from .Code import UtilityCode, TempitaUtilityCode
- from .UtilityCode import CythonUtilityCode
- from . import Buffer
- from . import PyrexTypes
- from . import ModuleNode
- START_ERR = "Start must not be given."
- STOP_ERR = "Axis specification only allowed in the 'step' slot."
- STEP_ERR = "Step must be omitted, 1, or a valid specifier."
- BOTH_CF_ERR = "Cannot specify an array that is both C and Fortran contiguous."
- INVALID_ERR = "Invalid axis specification."
- NOT_CIMPORTED_ERR = "Variable was not cimported from cython.view"
- EXPR_ERR = "no expressions allowed in axis spec, only names and literals."
- CF_ERR = "Invalid axis specification for a C/Fortran contiguous array."
- ERR_UNINITIALIZED = ("Cannot check if memoryview %s is initialized without the "
- "GIL, consider using initializedcheck(False)")
- def concat_flags(*flags):
- return "(%s)" % "|".join(flags)
- format_flag = "PyBUF_FORMAT"
- memview_c_contiguous = "(PyBUF_C_CONTIGUOUS | PyBUF_FORMAT)"
- memview_f_contiguous = "(PyBUF_F_CONTIGUOUS | PyBUF_FORMAT)"
- memview_any_contiguous = "(PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT)"
- memview_full_access = "PyBUF_FULL_RO"
- #memview_strided_access = "PyBUF_STRIDED_RO"
- memview_strided_access = "PyBUF_RECORDS_RO"
- MEMVIEW_DIRECT = '__Pyx_MEMVIEW_DIRECT'
- MEMVIEW_PTR = '__Pyx_MEMVIEW_PTR'
- MEMVIEW_FULL = '__Pyx_MEMVIEW_FULL'
- MEMVIEW_CONTIG = '__Pyx_MEMVIEW_CONTIG'
- MEMVIEW_STRIDED= '__Pyx_MEMVIEW_STRIDED'
- MEMVIEW_FOLLOW = '__Pyx_MEMVIEW_FOLLOW'
- _spec_to_const = {
- 'direct' : MEMVIEW_DIRECT,
- 'ptr' : MEMVIEW_PTR,
- 'full' : MEMVIEW_FULL,
- 'contig' : MEMVIEW_CONTIG,
- 'strided': MEMVIEW_STRIDED,
- 'follow' : MEMVIEW_FOLLOW,
- }
- _spec_to_abbrev = {
- 'direct' : 'd',
- 'ptr' : 'p',
- 'full' : 'f',
- 'contig' : 'c',
- 'strided' : 's',
- 'follow' : '_',
- }
- memslice_entry_init = "{ 0, 0, { 0 }, { 0 }, { 0 } }"
- memview_name = u'memoryview'
- memview_typeptr_cname = '__pyx_memoryview_type'
- memview_objstruct_cname = '__pyx_memoryview_obj'
- memviewslice_cname = u'__Pyx_memviewslice'
- def put_init_entry(mv_cname, code):
- code.putln("%s.data = NULL;" % mv_cname)
- code.putln("%s.memview = NULL;" % mv_cname)
- #def axes_to_str(axes):
- # return "".join([access[0].upper()+packing[0] for (access, packing) in axes])
- def put_acquire_memoryviewslice(lhs_cname, lhs_type, lhs_pos, rhs, code,
- have_gil=False, first_assignment=True):
- "We can avoid decreffing the lhs if we know it is the first assignment"
- assert rhs.type.is_memoryviewslice
- pretty_rhs = rhs.result_in_temp() or rhs.is_simple()
- if pretty_rhs:
- rhstmp = rhs.result()
- else:
- rhstmp = code.funcstate.allocate_temp(lhs_type, manage_ref=False)
- code.putln("%s = %s;" % (rhstmp, rhs.result_as(lhs_type)))
- # Allow uninitialized assignment
- #code.putln(code.put_error_if_unbound(lhs_pos, rhs.entry))
- put_assign_to_memviewslice(lhs_cname, rhs, rhstmp, lhs_type, code,
- have_gil=have_gil, first_assignment=first_assignment)
- if not pretty_rhs:
- code.funcstate.release_temp(rhstmp)
- def put_assign_to_memviewslice(lhs_cname, rhs, rhs_cname, memviewslicetype, code,
- have_gil=False, first_assignment=False):
- if not first_assignment:
- code.put_xdecref_memoryviewslice(lhs_cname, have_gil=have_gil)
- if not rhs.result_in_temp():
- rhs.make_owned_memoryviewslice(code)
- code.putln("%s = %s;" % (lhs_cname, rhs_cname))
- def get_buf_flags(specs):
- is_c_contig, is_f_contig = is_cf_contig(specs)
- if is_c_contig:
- return memview_c_contiguous
- elif is_f_contig:
- return memview_f_contiguous
- access, packing = zip(*specs)
- if 'full' in access or 'ptr' in access:
- return memview_full_access
- else:
- return memview_strided_access
- def insert_newaxes(memoryviewtype, n):
- axes = [('direct', 'strided')] * n
- axes.extend(memoryviewtype.axes)
- return PyrexTypes.MemoryViewSliceType(memoryviewtype.dtype, axes)
- def broadcast_types(src, dst):
- n = abs(src.ndim - dst.ndim)
- if src.ndim < dst.ndim:
- return insert_newaxes(src, n), dst
- else:
- return src, insert_newaxes(dst, n)
- def valid_memslice_dtype(dtype, i=0):
- """
- Return whether type dtype can be used as the base type of a
- memoryview slice.
- We support structs, numeric types and objects
- """
- if dtype.is_complex and dtype.real_type.is_int:
- return False
- if dtype is PyrexTypes.c_bint_type:
- return False
- if dtype.is_struct and dtype.kind == 'struct':
- for member in dtype.scope.var_entries:
- if not valid_memslice_dtype(member.type):
- return False
- return True
- return (
- dtype.is_error or
- # Pointers are not valid (yet)
- # (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or
- (dtype.is_array and i < 8 and
- valid_memslice_dtype(dtype.base_type, i + 1)) or
- dtype.is_numeric or
- dtype.is_pyobject or
- dtype.is_fused or # accept this as it will be replaced by specializations later
- (dtype.is_typedef and valid_memslice_dtype(dtype.typedef_base_type))
- )
- class MemoryViewSliceBufferEntry(Buffer.BufferEntry):
- """
- May be used during code generation time to be queried for
- shape/strides/suboffsets attributes, or to perform indexing or slicing.
- """
- def __init__(self, entry):
- self.entry = entry
- self.type = entry.type
- self.cname = entry.cname
- self.buf_ptr = "%s.data" % self.cname
- dtype = self.entry.type.dtype
- self.buf_ptr_type = PyrexTypes.CPtrType(dtype)
- self.init_attributes()
- def get_buf_suboffsetvars(self):
- return self._for_all_ndim("%s.suboffsets[%d]")
- def get_buf_stridevars(self):
- return self._for_all_ndim("%s.strides[%d]")
- def get_buf_shapevars(self):
- return self._for_all_ndim("%s.shape[%d]")
- def generate_buffer_lookup_code(self, code, index_cnames):
- axes = [(dim, index_cnames[dim], access, packing)
- for dim, (access, packing) in enumerate(self.type.axes)]
- return self._generate_buffer_lookup_code(code, axes)
- def _generate_buffer_lookup_code(self, code, axes, cast_result=True):
- """
- Generate a single expression that indexes the memory view slice
- in each dimension.
- """
- bufp = self.buf_ptr
- type_decl = self.type.dtype.empty_declaration_code()
- for dim, index, access, packing in axes:
- shape = "%s.shape[%d]" % (self.cname, dim)
- stride = "%s.strides[%d]" % (self.cname, dim)
- suboffset = "%s.suboffsets[%d]" % (self.cname, dim)
- flag = get_memoryview_flag(access, packing)
- if flag in ("generic", "generic_contiguous"):
- # Note: we cannot do cast tricks to avoid stride multiplication
- # for generic_contiguous, as we may have to do (dtype *)
- # or (dtype **) arithmetic, we won't know which unless
- # we check suboffsets
- code.globalstate.use_utility_code(memviewslice_index_helpers)
- bufp = ('__pyx_memviewslice_index_full(%s, %s, %s, %s)' %
- (bufp, index, stride, suboffset))
- elif flag == "indirect":
- bufp = "(%s + %s * %s)" % (bufp, index, stride)
- bufp = ("(*((char **) %s) + %s)" % (bufp, suboffset))
- elif flag == "indirect_contiguous":
- # Note: we do char ** arithmetic
- bufp = "(*((char **) %s + %s) + %s)" % (bufp, index, suboffset)
- elif flag == "strided":
- bufp = "(%s + %s * %s)" % (bufp, index, stride)
- else:
- assert flag == 'contiguous', flag
- bufp = '((char *) (((%s *) %s) + %s))' % (type_decl, bufp, index)
- bufp = '( /* dim=%d */ %s )' % (dim, bufp)
- if cast_result:
- return "((%s *) %s)" % (type_decl, bufp)
- return bufp
- def generate_buffer_slice_code(self, code, indices, dst, have_gil,
- have_slices, directives):
- """
- Slice a memoryviewslice.
- indices - list of index nodes. If not a SliceNode, or NoneNode,
- then it must be coercible to Py_ssize_t
- Simply call __pyx_memoryview_slice_memviewslice with the right
- arguments, unless the dimension is omitted or a bare ':', in which
- case we copy over the shape/strides/suboffsets attributes directly
- for that dimension.
- """
- src = self.cname
- code.putln("%(dst)s.data = %(src)s.data;" % locals())
- code.putln("%(dst)s.memview = %(src)s.memview;" % locals())
- code.put_incref_memoryviewslice(dst)
- all_dimensions_direct = all(access == 'direct' for access, packing in self.type.axes)
- suboffset_dim_temp = []
- def get_suboffset_dim():
- # create global temp variable at request
- if not suboffset_dim_temp:
- suboffset_dim = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
- code.putln("%s = -1;" % suboffset_dim)
- suboffset_dim_temp.append(suboffset_dim)
- return suboffset_dim_temp[0]
- dim = -1
- new_ndim = 0
- for index in indices:
- if index.is_none:
- # newaxis
- for attrib, value in [('shape', 1), ('strides', 0), ('suboffsets', -1)]:
- code.putln("%s.%s[%d] = %d;" % (dst, attrib, new_ndim, value))
- new_ndim += 1
- continue
- dim += 1
- access, packing = self.type.axes[dim]
- if isinstance(index, ExprNodes.SliceNode):
- # slice, unspecified dimension, or part of ellipsis
- d = dict(locals())
- for s in "start stop step".split():
- idx = getattr(index, s)
- have_idx = d['have_' + s] = not idx.is_none
- d[s] = idx.result() if have_idx else "0"
- if not (d['have_start'] or d['have_stop'] or d['have_step']):
- # full slice (:), simply copy over the extent, stride
- # and suboffset. Also update suboffset_dim if needed
- d['access'] = access
- util_name = "SimpleSlice"
- else:
- util_name = "ToughSlice"
- d['error_goto'] = code.error_goto(index.pos)
- new_ndim += 1
- else:
- # normal index
- idx = index.result()
- indirect = access != 'direct'
- if indirect:
- generic = access == 'full'
- if new_ndim != 0:
- return error(index.pos,
- "All preceding dimensions must be "
- "indexed and not sliced")
- d = dict(
- locals(),
- wraparound=int(directives['wraparound']),
- boundscheck=int(directives['boundscheck']),
- )
- if d['boundscheck']:
- d['error_goto'] = code.error_goto(index.pos)
- util_name = "SliceIndex"
- _, impl = TempitaUtilityCode.load_as_string(util_name, "MemoryView_C.c", context=d)
- code.put(impl)
- if suboffset_dim_temp:
- code.funcstate.release_temp(suboffset_dim_temp[0])
- def empty_slice(pos):
- none = ExprNodes.NoneNode(pos)
- return ExprNodes.SliceNode(pos, start=none,
- stop=none, step=none)
- def unellipsify(indices, ndim):
- result = []
- seen_ellipsis = False
- have_slices = False
- newaxes = [newaxis for newaxis in indices if newaxis.is_none]
- n_indices = len(indices) - len(newaxes)
- for index in indices:
- if isinstance(index, ExprNodes.EllipsisNode):
- have_slices = True
- full_slice = empty_slice(index.pos)
- if seen_ellipsis:
- result.append(full_slice)
- else:
- nslices = ndim - n_indices + 1
- result.extend([full_slice] * nslices)
- seen_ellipsis = True
- else:
- have_slices = have_slices or index.is_slice or index.is_none
- result.append(index)
- result_length = len(result) - len(newaxes)
- if result_length < ndim:
- have_slices = True
- nslices = ndim - result_length
- result.extend([empty_slice(indices[-1].pos)] * nslices)
- return have_slices, result, newaxes
- def get_memoryview_flag(access, packing):
- if access == 'full' and packing in ('strided', 'follow'):
- return 'generic'
- elif access == 'full' and packing == 'contig':
- return 'generic_contiguous'
- elif access == 'ptr' and packing in ('strided', 'follow'):
- return 'indirect'
- elif access == 'ptr' and packing == 'contig':
- return 'indirect_contiguous'
- elif access == 'direct' and packing in ('strided', 'follow'):
- return 'strided'
- else:
- assert (access, packing) == ('direct', 'contig'), (access, packing)
- return 'contiguous'
- def get_is_contig_func_name(contig_type, ndim):
- assert contig_type in ('C', 'F')
- return "__pyx_memviewslice_is_contig_%s%d" % (contig_type, ndim)
- def get_is_contig_utility(contig_type, ndim):
- assert contig_type in ('C', 'F')
- C = dict(context, ndim=ndim, contig_type=contig_type)
- utility = load_memview_c_utility("MemviewSliceCheckContig", C, requires=[is_contig_utility])
- return utility
- def slice_iter(slice_type, slice_result, ndim, code):
- if slice_type.is_c_contig or slice_type.is_f_contig:
- return ContigSliceIter(slice_type, slice_result, ndim, code)
- else:
- return StridedSliceIter(slice_type, slice_result, ndim, code)
- class SliceIter(object):
- def __init__(self, slice_type, slice_result, ndim, code):
- self.slice_type = slice_type
- self.slice_result = slice_result
- self.code = code
- self.ndim = ndim
- class ContigSliceIter(SliceIter):
- def start_loops(self):
- code = self.code
- code.begin_block()
- type_decl = self.slice_type.dtype.empty_declaration_code()
- total_size = ' * '.join("%s.shape[%d]" % (self.slice_result, i)
- for i in range(self.ndim))
- code.putln("Py_ssize_t __pyx_temp_extent = %s;" % total_size)
- code.putln("Py_ssize_t __pyx_temp_idx;")
- code.putln("%s *__pyx_temp_pointer = (%s *) %s.data;" % (
- type_decl, type_decl, self.slice_result))
- code.putln("for (__pyx_temp_idx = 0; "
- "__pyx_temp_idx < __pyx_temp_extent; "
- "__pyx_temp_idx++) {")
- return "__pyx_temp_pointer"
- def end_loops(self):
- self.code.putln("__pyx_temp_pointer += 1;")
- self.code.putln("}")
- self.code.end_block()
- class StridedSliceIter(SliceIter):
- def start_loops(self):
- code = self.code
- code.begin_block()
- for i in range(self.ndim):
- t = i, self.slice_result, i
- code.putln("Py_ssize_t __pyx_temp_extent_%d = %s.shape[%d];" % t)
- code.putln("Py_ssize_t __pyx_temp_stride_%d = %s.strides[%d];" % t)
- code.putln("char *__pyx_temp_pointer_%d;" % i)
- code.putln("Py_ssize_t __pyx_temp_idx_%d;" % i)
- code.putln("__pyx_temp_pointer_0 = %s.data;" % self.slice_result)
- for i in range(self.ndim):
- if i > 0:
- code.putln("__pyx_temp_pointer_%d = __pyx_temp_pointer_%d;" % (i, i - 1))
- code.putln("for (__pyx_temp_idx_%d = 0; "
- "__pyx_temp_idx_%d < __pyx_temp_extent_%d; "
- "__pyx_temp_idx_%d++) {" % (i, i, i, i))
- return "__pyx_temp_pointer_%d" % (self.ndim - 1)
- def end_loops(self):
- code = self.code
- for i in range(self.ndim - 1, -1, -1):
- code.putln("__pyx_temp_pointer_%d += __pyx_temp_stride_%d;" % (i, i))
- code.putln("}")
- code.end_block()
- def copy_c_or_fortran_cname(memview):
- if memview.is_c_contig:
- c_or_f = 'c'
- else:
- c_or_f = 'f'
- return "__pyx_memoryview_copy_slice_%s_%s" % (
- memview.specialization_suffix(), c_or_f)
- def get_copy_new_utility(pos, from_memview, to_memview):
- if (from_memview.dtype != to_memview.dtype and
- not (from_memview.dtype.is_const and from_memview.dtype.const_base_type == to_memview.dtype)):
- error(pos, "dtypes must be the same!")
- return
- if len(from_memview.axes) != len(to_memview.axes):
- error(pos, "number of dimensions must be same")
- return
- if not (to_memview.is_c_contig or to_memview.is_f_contig):
- error(pos, "to_memview must be c or f contiguous.")
- return
- for (access, packing) in from_memview.axes:
- if access != 'direct':
- error(pos, "cannot handle 'full' or 'ptr' access at this time.")
- return
- if to_memview.is_c_contig:
- mode = 'c'
- contig_flag = memview_c_contiguous
- elif to_memview.is_f_contig:
- mode = 'fortran'
- contig_flag = memview_f_contiguous
- return load_memview_c_utility(
- "CopyContentsUtility",
- context=dict(
- context,
- mode=mode,
- dtype_decl=to_memview.dtype.empty_declaration_code(),
- contig_flag=contig_flag,
- ndim=to_memview.ndim,
- func_cname=copy_c_or_fortran_cname(to_memview),
- dtype_is_object=int(to_memview.dtype.is_pyobject)),
- requires=[copy_contents_new_utility])
- def get_axes_specs(env, axes):
- '''
- get_axes_specs(env, axes) -> list of (access, packing) specs for each axis.
- access is one of 'full', 'ptr' or 'direct'
- packing is one of 'contig', 'strided' or 'follow'
- '''
- cythonscope = env.global_scope().context.cython_scope
- cythonscope.load_cythonscope()
- viewscope = cythonscope.viewscope
- access_specs = tuple([viewscope.lookup(name)
- for name in ('full', 'direct', 'ptr')])
- packing_specs = tuple([viewscope.lookup(name)
- for name in ('contig', 'strided', 'follow')])
- is_f_contig, is_c_contig = False, False
- default_access, default_packing = 'direct', 'strided'
- cf_access, cf_packing = default_access, 'follow'
- axes_specs = []
- # analyse all axes.
- for idx, axis in enumerate(axes):
- if not axis.start.is_none:
- raise CompileError(axis.start.pos, START_ERR)
- if not axis.stop.is_none:
- raise CompileError(axis.stop.pos, STOP_ERR)
- if axis.step.is_none:
- axes_specs.append((default_access, default_packing))
- elif isinstance(axis.step, IntNode):
- # the packing for the ::1 axis is contiguous,
- # all others are cf_packing.
- if axis.step.compile_time_value(env) != 1:
- raise CompileError(axis.step.pos, STEP_ERR)
- axes_specs.append((cf_access, 'cfcontig'))
- elif isinstance(axis.step, (NameNode, AttributeNode)):
- entry = _get_resolved_spec(env, axis.step)
- if entry.name in view_constant_to_access_packing:
- axes_specs.append(view_constant_to_access_packing[entry.name])
- else:
- raise CompileError(axis.step.pos, INVALID_ERR)
- else:
- raise CompileError(axis.step.pos, INVALID_ERR)
- # First, find out if we have a ::1 somewhere
- contig_dim = 0
- is_contig = False
- for idx, (access, packing) in enumerate(axes_specs):
- if packing == 'cfcontig':
- if is_contig:
- raise CompileError(axis.step.pos, BOTH_CF_ERR)
- contig_dim = idx
- axes_specs[idx] = (access, 'contig')
- is_contig = True
- if is_contig:
- # We have a ::1 somewhere, see if we're C or Fortran contiguous
- if contig_dim == len(axes) - 1:
- is_c_contig = True
- else:
- is_f_contig = True
- if contig_dim and not axes_specs[contig_dim - 1][0] in ('full', 'ptr'):
- raise CompileError(axes[contig_dim].pos,
- "Fortran contiguous specifier must follow an indirect dimension")
- if is_c_contig:
- # Contiguous in the last dimension, find the last indirect dimension
- contig_dim = -1
- for idx, (access, packing) in enumerate(reversed(axes_specs)):
- if access in ('ptr', 'full'):
- contig_dim = len(axes) - idx - 1
- # Replace 'strided' with 'follow' for any dimension following the last
- # indirect dimension, the first dimension or the dimension following
- # the ::1.
- # int[::indirect, ::1, :, :]
- # ^ ^
- # int[::indirect, :, :, ::1]
- # ^ ^
- start = contig_dim + 1
- stop = len(axes) - is_c_contig
- for idx, (access, packing) in enumerate(axes_specs[start:stop]):
- idx = contig_dim + 1 + idx
- if access != 'direct':
- raise CompileError(axes[idx].pos,
- "Indirect dimension may not follow "
- "Fortran contiguous dimension")
- if packing == 'contig':
- raise CompileError(axes[idx].pos,
- "Dimension may not be contiguous")
- axes_specs[idx] = (access, cf_packing)
- if is_c_contig:
- # For C contiguity, we need to fix the 'contig' dimension
- # after the loop
- a, p = axes_specs[-1]
- axes_specs[-1] = a, 'contig'
- validate_axes_specs([axis.start.pos for axis in axes],
- axes_specs,
- is_c_contig,
- is_f_contig)
- return axes_specs
- def validate_axes(pos, axes):
- if len(axes) >= Options.buffer_max_dims:
- error(pos, "More dimensions than the maximum number"
- " of buffer dimensions were used.")
- return False
- return True
- def is_cf_contig(specs):
- is_c_contig = is_f_contig = False
- if len(specs) == 1 and specs == [('direct', 'contig')]:
- is_c_contig = True
- elif (specs[-1] == ('direct','contig') and
- all(axis == ('direct','follow') for axis in specs[:-1])):
- # c_contiguous: 'follow', 'follow', ..., 'follow', 'contig'
- is_c_contig = True
- elif (len(specs) > 1 and
- specs[0] == ('direct','contig') and
- all(axis == ('direct','follow') for axis in specs[1:])):
- # f_contiguous: 'contig', 'follow', 'follow', ..., 'follow'
- is_f_contig = True
- return is_c_contig, is_f_contig
- def get_mode(specs):
- is_c_contig, is_f_contig = is_cf_contig(specs)
- if is_c_contig:
- return 'c'
- elif is_f_contig:
- return 'fortran'
- for access, packing in specs:
- if access in ('ptr', 'full'):
- return 'full'
- return 'strided'
- view_constant_to_access_packing = {
- 'generic': ('full', 'strided'),
- 'strided': ('direct', 'strided'),
- 'indirect': ('ptr', 'strided'),
- 'generic_contiguous': ('full', 'contig'),
- 'contiguous': ('direct', 'contig'),
- 'indirect_contiguous': ('ptr', 'contig'),
- }
- def validate_axes_specs(positions, specs, is_c_contig, is_f_contig):
- packing_specs = ('contig', 'strided', 'follow')
- access_specs = ('direct', 'ptr', 'full')
- # is_c_contig, is_f_contig = is_cf_contig(specs)
- has_contig = has_follow = has_strided = has_generic_contig = False
- last_indirect_dimension = -1
- for idx, (access, packing) in enumerate(specs):
- if access == 'ptr':
- last_indirect_dimension = idx
- for idx, (pos, (access, packing)) in enumerate(zip(positions, specs)):
- if not (access in access_specs and
- packing in packing_specs):
- raise CompileError(pos, "Invalid axes specification.")
- if packing == 'strided':
- has_strided = True
- elif packing == 'contig':
- if has_contig:
- raise CompileError(pos, "Only one direct contiguous "
- "axis may be specified.")
- valid_contig_dims = last_indirect_dimension + 1, len(specs) - 1
- if idx not in valid_contig_dims and access != 'ptr':
- if last_indirect_dimension + 1 != len(specs) - 1:
- dims = "dimensions %d and %d" % valid_contig_dims
- else:
- dims = "dimension %d" % valid_contig_dims[0]
- raise CompileError(pos, "Only %s may be contiguous and direct" % dims)
- has_contig = access != 'ptr'
- elif packing == 'follow':
- if has_strided:
- raise CompileError(pos, "A memoryview cannot have both follow and strided axis specifiers.")
- if not (is_c_contig or is_f_contig):
- raise CompileError(pos, "Invalid use of the follow specifier.")
- if access in ('ptr', 'full'):
- has_strided = False
- def _get_resolved_spec(env, spec):
- # spec must be a NameNode or an AttributeNode
- if isinstance(spec, NameNode):
- return _resolve_NameNode(env, spec)
- elif isinstance(spec, AttributeNode):
- return _resolve_AttributeNode(env, spec)
- else:
- raise CompileError(spec.pos, INVALID_ERR)
- def _resolve_NameNode(env, node):
- try:
- resolved_name = env.lookup(node.name).name
- except AttributeError:
- raise CompileError(node.pos, INVALID_ERR)
- viewscope = env.global_scope().context.cython_scope.viewscope
- entry = viewscope.lookup(resolved_name)
- if entry is None:
- raise CompileError(node.pos, NOT_CIMPORTED_ERR)
- return entry
- def _resolve_AttributeNode(env, node):
- path = []
- while isinstance(node, AttributeNode):
- path.insert(0, node.attribute)
- node = node.obj
- if isinstance(node, NameNode):
- path.insert(0, node.name)
- else:
- raise CompileError(node.pos, EXPR_ERR)
- modnames = path[:-1]
- # must be at least 1 module name, o/w not an AttributeNode.
- assert modnames
- scope = env
- for modname in modnames:
- mod = scope.lookup(modname)
- if not mod or not mod.as_module:
- raise CompileError(
- node.pos, "undeclared name not builtin: %s" % modname)
- scope = mod.as_module
- entry = scope.lookup(path[-1])
- if not entry:
- raise CompileError(node.pos, "No such attribute '%s'" % path[-1])
- return entry
- #
- ### Utility loading
- #
- def load_memview_cy_utility(util_code_name, context=None, **kwargs):
- return CythonUtilityCode.load(util_code_name, "MemoryView.pyx",
- context=context, **kwargs)
- def load_memview_c_utility(util_code_name, context=None, **kwargs):
- if context is None:
- return UtilityCode.load(util_code_name, "MemoryView_C.c", **kwargs)
- else:
- return TempitaUtilityCode.load(util_code_name, "MemoryView_C.c",
- context=context, **kwargs)
- def use_cython_array_utility_code(env):
- cython_scope = env.global_scope().context.cython_scope
- cython_scope.load_cythonscope()
- cython_scope.viewscope.lookup('array_cwrapper').used = True
- context = {
- 'memview_struct_name': memview_objstruct_cname,
- 'max_dims': Options.buffer_max_dims,
- 'memviewslice_name': memviewslice_cname,
- 'memslice_init': memslice_entry_init,
- }
- memviewslice_declare_code = load_memview_c_utility(
- "MemviewSliceStruct",
- context=context,
- requires=[])
- atomic_utility = load_memview_c_utility("Atomics", context)
- memviewslice_init_code = load_memview_c_utility(
- "MemviewSliceInit",
- context=dict(context, BUF_MAX_NDIMS=Options.buffer_max_dims),
- requires=[memviewslice_declare_code,
- atomic_utility],
- )
- memviewslice_index_helpers = load_memview_c_utility("MemviewSliceIndex")
- typeinfo_to_format_code = load_memview_cy_utility(
- "BufferFormatFromTypeInfo", requires=[Buffer._typeinfo_to_format_code])
- is_contig_utility = load_memview_c_utility("MemviewSliceIsContig", context)
- overlapping_utility = load_memview_c_utility("OverlappingSlices", context)
- copy_contents_new_utility = load_memview_c_utility(
- "MemviewSliceCopyTemplate",
- context,
- requires=[], # require cython_array_utility_code
- )
- view_utility_code = load_memview_cy_utility(
- "View.MemoryView",
- context=context,
- requires=[Buffer.GetAndReleaseBufferUtilityCode(),
- Buffer.buffer_struct_declare_code,
- Buffer.buffer_formats_declare_code,
- memviewslice_init_code,
- is_contig_utility,
- overlapping_utility,
- copy_contents_new_utility,
- ModuleNode.capsule_utility_code],
- )
- view_utility_whitelist = ('array', 'memoryview', 'array_cwrapper',
- 'generic', 'strided', 'indirect', 'contiguous',
- 'indirect_contiguous')
- memviewslice_declare_code.requires.append(view_utility_code)
- copy_contents_new_utility.requires.append(view_utility_code)
|