123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- # cython: language_level=3
- from __future__ import absolute_import
- from .PyrexTypes import CType, CTypedefType, CStructOrUnionType
- import cython
- try:
- import pythran
- pythran_is_pre_0_9 = tuple(map(int, pythran.__version__.split('.')[0:2])) < (0, 9)
- pythran_is_pre_0_9_6 = tuple(map(int, pythran.__version__.split('.')[0:3])) < (0, 9, 6)
- except ImportError:
- pythran = None
- pythran_is_pre_0_9 = True
- pythran_is_pre_0_9_6 = True
- if pythran_is_pre_0_9_6:
- pythran_builtins = '__builtin__'
- else:
- pythran_builtins = 'builtins'
- # Pythran/Numpy specific operations
- def has_np_pythran(env):
- if env is None:
- return False
- directives = getattr(env, 'directives', None)
- return (directives and directives.get('np_pythran', False))
- @cython.ccall
- def is_pythran_supported_dtype(type_):
- if isinstance(type_, CTypedefType):
- return is_pythran_supported_type(type_.typedef_base_type)
- return type_.is_numeric
- def pythran_type(Ty, ptype="ndarray"):
- if Ty.is_buffer:
- ndim,dtype = Ty.ndim, Ty.dtype
- if isinstance(dtype, CStructOrUnionType):
- ctype = dtype.cname
- elif isinstance(dtype, CType):
- ctype = dtype.sign_and_name()
- elif isinstance(dtype, CTypedefType):
- ctype = dtype.typedef_cname
- else:
- raise ValueError("unsupported type %s!" % dtype)
- if pythran_is_pre_0_9:
- return "pythonic::types::%s<%s,%d>" % (ptype,ctype, ndim)
- else:
- return "pythonic::types::%s<%s,pythonic::types::pshape<%s>>" % (ptype,ctype, ",".join(("long",)*ndim))
- if Ty.is_pythran_expr:
- return Ty.pythran_type
- #if Ty.is_none:
- # return "decltype(pythonic::builtins::None)"
- if Ty.is_numeric:
- return Ty.sign_and_name()
- raise ValueError("unsupported pythran type %s (%s)" % (Ty, type(Ty)))
- @cython.cfunc
- def type_remove_ref(ty):
- return "typename std::remove_reference<%s>::type" % ty
- def pythran_binop_type(op, tA, tB):
- if op == '**':
- return 'decltype(pythonic::numpy::functor::power{}(std::declval<%s>(), std::declval<%s>()))' % (
- pythran_type(tA), pythran_type(tB))
- else:
- return "decltype(std::declval<%s>() %s std::declval<%s>())" % (
- pythran_type(tA), op, pythran_type(tB))
- def pythran_unaryop_type(op, type_):
- return "decltype(%sstd::declval<%s>())" % (
- op, pythran_type(type_))
- @cython.cfunc
- def _index_access(index_code, indices):
- indexing = ",".join([index_code(idx) for idx in indices])
- return ('[%s]' if len(indices) == 1 else '(%s)') % indexing
- def _index_type_code(index_with_type):
- idx, index_type = index_with_type
- if idx.is_slice:
- n = 2 + int(not idx.step.is_none)
- return "pythonic::%s::functor::slice{}(%s)" % (
- pythran_builtins,
- ",".join(["0"]*n))
- elif index_type.is_int:
- return "std::declval<%s>()" % index_type.sign_and_name()
- elif index_type.is_pythran_expr:
- return "std::declval<%s>()" % index_type.pythran_type
- raise ValueError("unsupported indexing type %s!" % index_type)
- def _index_code(idx):
- if idx.is_slice:
- values = idx.start, idx.stop, idx.step
- if idx.step.is_none:
- func = "contiguous_slice"
- values = values[:2]
- else:
- func = "slice"
- return "pythonic::types::%s(%s)" % (
- func, ",".join((v.pythran_result() for v in values)))
- elif idx.type.is_int:
- return to_pythran(idx)
- elif idx.type.is_pythran_expr:
- return idx.pythran_result()
- raise ValueError("unsupported indexing type %s" % idx.type)
- def pythran_indexing_type(type_, indices):
- return type_remove_ref("decltype(std::declval<%s>()%s)" % (
- pythran_type(type_),
- _index_access(_index_type_code, indices),
- ))
- def pythran_indexing_code(indices):
- return _index_access(_index_code, indices)
- def np_func_to_list(func):
- if not func.is_numpy_attribute:
- return []
- return np_func_to_list(func.obj) + [func.attribute]
- if pythran is None:
- def pythran_is_numpy_func_supported(name):
- return False
- else:
- def pythran_is_numpy_func_supported(func):
- CurF = pythran.tables.MODULES['numpy']
- FL = np_func_to_list(func)
- for F in FL:
- CurF = CurF.get(F, None)
- if CurF is None:
- return False
- return True
- def pythran_functor(func):
- func = np_func_to_list(func)
- submodules = "::".join(func[:-1] + ["functor"])
- return "pythonic::numpy::%s::%s" % (submodules, func[-1])
- def pythran_func_type(func, args):
- args = ",".join(("std::declval<%s>()" % pythran_type(a.type) for a in args))
- return "decltype(%s{}(%s))" % (pythran_functor(func), args)
- @cython.ccall
- def to_pythran(op, ptype=None):
- op_type = op.type
- if op_type.is_int:
- # Make sure that integer literals always have exactly the type that the templates expect.
- return op_type.cast_code(op.result())
- if is_type(op_type, ["is_pythran_expr", "is_numeric", "is_float", "is_complex"]):
- return op.result()
- if op.is_none:
- return "pythonic::%s::None" % pythran_builtins
- if ptype is None:
- ptype = pythran_type(op_type)
- assert op.type.is_pyobject
- return "from_python<%s>(%s)" % (ptype, op.py_result())
- @cython.cfunc
- def is_type(type_, types):
- for attr in types:
- if getattr(type_, attr, False):
- return True
- return False
- def is_pythran_supported_node_or_none(node):
- return node.is_none or is_pythran_supported_type(node.type)
- @cython.ccall
- def is_pythran_supported_type(type_):
- pythran_supported = (
- "is_pythran_expr", "is_int", "is_numeric", "is_float", "is_none", "is_complex")
- return is_type(type_, pythran_supported) or is_pythran_expr(type_)
- def is_pythran_supported_operation_type(type_):
- pythran_supported = (
- "is_pythran_expr", "is_int", "is_numeric", "is_float", "is_complex")
- return is_type(type_,pythran_supported) or is_pythran_expr(type_)
- @cython.ccall
- def is_pythran_expr(type_):
- return type_.is_pythran_expr
- def is_pythran_buffer(type_):
- return (type_.is_numpy_buffer and is_pythran_supported_dtype(type_.dtype) and
- type_.mode in ("c", "strided") and not type_.cast)
- def pythran_get_func_include_file(func):
- func = np_func_to_list(func)
- return "pythonic/numpy/%s.hpp" % "/".join(func)
- def include_pythran_generic(env):
- # Generic files
- env.add_include_file("pythonic/core.hpp")
- env.add_include_file("pythonic/python/core.hpp")
- env.add_include_file("pythonic/types/bool.hpp")
- env.add_include_file("pythonic/types/ndarray.hpp")
- env.add_include_file("pythonic/numpy/power.hpp")
- env.add_include_file("pythonic/%s/slice.hpp" % pythran_builtins)
- env.add_include_file("<new>") # for placement new
- for i in (8, 16, 32, 64):
- env.add_include_file("pythonic/types/uint%d.hpp" % i)
- env.add_include_file("pythonic/types/int%d.hpp" % i)
- for t in ("float", "float32", "float64", "set", "slice", "tuple", "int",
- "complex", "complex64", "complex128"):
- env.add_include_file("pythonic/types/%s.hpp" % t)
|