123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- import datetime
- import re
- import numpy as np
- from matplotlib.testing.decorators import image_comparison
- from matplotlib import pyplot as plt
- from numpy.testing import assert_array_almost_equal
- from matplotlib.colors import LogNorm
- import pytest
- def test_contour_shape_1d_valid():
- x = np.arange(10)
- y = np.arange(9)
- z = np.random.random((9, 10))
- fig, ax = plt.subplots()
- ax.contour(x, y, z)
- def test_contour_shape_2d_valid():
- x = np.arange(10)
- y = np.arange(9)
- xg, yg = np.meshgrid(x, y)
- z = np.random.random((9, 10))
- fig, ax = plt.subplots()
- ax.contour(xg, yg, z)
- @pytest.mark.parametrize("args, message", [
- ((np.arange(9), np.arange(9), np.empty((9, 10))),
- 'Length of x (9) must match number of columns in z (10)'),
- ((np.arange(10), np.arange(10), np.empty((9, 10))),
- 'Length of y (10) must match number of rows in z (9)'),
- ((np.empty((10, 10)), np.arange(10), np.empty((9, 10))),
- 'Number of dimensions of x (2) and y (1) do not match'),
- ((np.arange(10), np.empty((10, 10)), np.empty((9, 10))),
- 'Number of dimensions of x (1) and y (2) do not match'),
- ((np.empty((9, 9)), np.empty((9, 10)), np.empty((9, 10))),
- 'Shapes of x (9, 9) and z (9, 10) do not match'),
- ((np.empty((9, 10)), np.empty((9, 9)), np.empty((9, 10))),
- 'Shapes of y (9, 9) and z (9, 10) do not match'),
- ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((9, 10))),
- 'Inputs x and y must be 1D or 2D, not 3D'),
- ((np.empty((3, 3, 3)), np.empty((3, 3, 3)), np.empty((3, 3, 3))),
- 'Input z must be 2D, not 3D'),
- (([[0]],), # github issue 8197
- 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
- (([0], [0], [[0]]),
- 'Input z must be at least a (2, 2) shaped array, but has shape (1, 1)'),
- ])
- def test_contour_shape_error(args, message):
- fig, ax = plt.subplots()
- with pytest.raises(TypeError, match=re.escape(message)):
- ax.contour(*args)
- def test_contour_empty_levels():
- x = np.arange(9)
- z = np.random.random((9, 9))
- fig, ax = plt.subplots()
- with pytest.warns(UserWarning) as record:
- ax.contour(x, x, z, levels=[])
- assert len(record) == 1
- def test_contour_Nlevels():
- # A scalar levels arg or kwarg should trigger auto level generation.
- # https://github.com/matplotlib/matplotlib/issues/11913
- z = np.arange(12).reshape((3, 4))
- fig, ax = plt.subplots()
- cs1 = ax.contour(z, 5)
- assert len(cs1.levels) > 1
- cs2 = ax.contour(z, levels=5)
- assert (cs1.levels == cs2.levels).all()
- def test_contour_badlevel_fmt():
- # Test edge case from https://github.com/matplotlib/matplotlib/issues/9742
- # User supplied fmt for each level as a dictionary, but Matplotlib changed
- # the level to the minimum data value because no contours possible.
- # This was fixed in https://github.com/matplotlib/matplotlib/pull/9743
- x = np.arange(9)
- z = np.zeros((9, 9))
- fig, ax = plt.subplots()
- fmt = {1.: '%1.2f'}
- with pytest.warns(UserWarning) as record:
- cs = ax.contour(x, x, z, levels=[1.])
- ax.clabel(cs, fmt=fmt)
- assert len(record) == 1
- def test_contour_uniform_z():
- x = np.arange(9)
- z = np.ones((9, 9))
- fig, ax = plt.subplots()
- with pytest.warns(UserWarning) as record:
- ax.contour(x, x, z)
- assert len(record) == 1
- @image_comparison(['contour_manual_labels'],
- savefig_kwarg={'dpi': 200}, remove_text=True, style='mpl20')
- def test_contour_manual_labels():
- x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
- z = np.max(np.dstack([abs(x), abs(y)]), 2)
- plt.figure(figsize=(6, 2), dpi=200)
- cs = plt.contour(x, y, z)
- pts = np.array([(1.5, 3.0), (1.5, 4.4), (1.5, 6.0)])
- plt.clabel(cs, manual=pts)
- @image_comparison(['contour_labels_size_color.png'],
- remove_text=True, style='mpl20')
- def test_contour_labels_size_color():
- x, y = np.meshgrid(np.arange(0, 10), np.arange(0, 10))
- z = np.max(np.dstack([abs(x), abs(y)]), 2)
- plt.figure(figsize=(6, 2))
- cs = plt.contour(x, y, z)
- pts = np.array([(1.5, 3.0), (1.5, 4.4), (1.5, 6.0)])
- plt.clabel(cs, manual=pts, fontsize='small', colors=('r', 'g'))
- @image_comparison(['contour_manual_colors_and_levels.png'], remove_text=True)
- def test_given_colors_levels_and_extends():
- _, axs = plt.subplots(2, 4)
- data = np.arange(12).reshape(3, 4)
- colors = ['red', 'yellow', 'pink', 'blue', 'black']
- levels = [2, 4, 8, 10]
- for i, ax in enumerate(axs.flat):
- filled = i % 2 == 0.
- extend = ['neither', 'min', 'max', 'both'][i // 2]
- if filled:
- # If filled, we have 3 colors with no extension,
- # 4 colors with one extension, and 5 colors with both extensions
- first_color = 1 if extend in ['max', 'neither'] else None
- last_color = -1 if extend in ['min', 'neither'] else None
- c = ax.contourf(data, colors=colors[first_color:last_color],
- levels=levels, extend=extend)
- else:
- # If not filled, we have 4 levels and 4 colors
- c = ax.contour(data, colors=colors[:-1],
- levels=levels, extend=extend)
- plt.colorbar(c, ax=ax)
- @image_comparison(['contour_datetime_axis.png'],
- remove_text=False, style='mpl20')
- def test_contour_datetime_axis():
- fig = plt.figure()
- fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15)
- base = datetime.datetime(2013, 1, 1)
- x = np.array([base + datetime.timedelta(days=d) for d in range(20)])
- y = np.arange(20)
- z1, z2 = np.meshgrid(np.arange(20), np.arange(20))
- z = z1 * z2
- plt.subplot(221)
- plt.contour(x, y, z)
- plt.subplot(222)
- plt.contourf(x, y, z)
- x = np.repeat(x[np.newaxis], 20, axis=0)
- y = np.repeat(y[:, np.newaxis], 20, axis=1)
- plt.subplot(223)
- plt.contour(x, y, z)
- plt.subplot(224)
- plt.contourf(x, y, z)
- for ax in fig.get_axes():
- for label in ax.get_xticklabels():
- label.set_ha('right')
- label.set_rotation(30)
- @image_comparison(['contour_test_label_transforms.png'],
- remove_text=True, style='mpl20')
- def test_labels():
- # Adapted from pylab_examples example code: contour_demo.py
- # see issues #2475, #2843, and #2818 for explanation
- delta = 0.025
- x = np.arange(-3.0, 3.0, delta)
- y = np.arange(-2.0, 2.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
- Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
- (2 * np.pi * 0.5 * 1.5))
- # difference of Gaussians
- Z = 10.0 * (Z2 - Z1)
- fig, ax = plt.subplots(1, 1)
- CS = ax.contour(X, Y, Z)
- disp_units = [(216, 177), (359, 290), (521, 406)]
- data_units = [(-2, .5), (0, -1.5), (2.8, 1)]
- CS.clabel()
- for x, y in data_units:
- CS.add_label_near(x, y, inline=True, transform=None)
- for x, y in disp_units:
- CS.add_label_near(x, y, inline=True, transform=False)
- @image_comparison(['contour_corner_mask_False.png',
- 'contour_corner_mask_True.png'],
- remove_text=True)
- def test_corner_mask():
- n = 60
- mask_level = 0.95
- noise_amp = 1.0
- np.random.seed([1])
- x, y = np.meshgrid(np.linspace(0, 2.0, n), np.linspace(0, 2.0, n))
- z = np.cos(7*x)*np.sin(8*y) + noise_amp*np.random.rand(n, n)
- mask = np.random.rand(n, n) >= mask_level
- z = np.ma.array(z, mask=mask)
- for corner_mask in [False, True]:
- plt.figure()
- plt.contourf(z, corner_mask=corner_mask)
- def test_contourf_decreasing_levels():
- # github issue 5477.
- z = [[0.1, 0.3], [0.5, 0.7]]
- plt.figure()
- with pytest.raises(ValueError):
- plt.contourf(z, [1.0, 0.0])
- def test_contourf_symmetric_locator():
- # github issue 7271
- z = np.arange(12).reshape((3, 4))
- locator = plt.MaxNLocator(nbins=4, symmetric=True)
- cs = plt.contourf(z, locator=locator)
- assert_array_almost_equal(cs.levels, np.linspace(-12, 12, 5))
- @pytest.mark.parametrize("args, cls, message", [
- ((), TypeError,
- 'function takes exactly 6 arguments (0 given)'),
- ((1, 2, 3, 4, 5, 6), ValueError,
- 'Expected 2-dimensional array, got 0'),
- (([[0]], [[0]], [[]], None, True, 0), ValueError,
- 'x, y and z must all be 2D arrays with the same dimensions'),
- (([[0]], [[0]], [[0]], None, True, 0), ValueError,
- 'x, y and z must all be at least 2x2 arrays'),
- ((*[np.arange(4).reshape((2, 2))] * 3, [[0]], True, 0), ValueError,
- 'If mask is set it must be a 2D array with the same dimensions as x.'),
- ])
- def test_internal_cpp_api(args, cls, message): # Github issue 8197.
- import matplotlib._contour as _contour
- with pytest.raises(cls, match=re.escape(message)):
- _contour.QuadContourGenerator(*args)
- def test_internal_cpp_api_2():
- import matplotlib._contour as _contour
- arr = [[0, 1], [2, 3]]
- qcg = _contour.QuadContourGenerator(arr, arr, arr, None, True, 0)
- with pytest.raises(
- ValueError, match=r'filled contour levels must be increasing'):
- qcg.create_filled_contour(1, 0)
- def test_circular_contour_warning():
- # Check that almost circular contours don't throw a warning
- with pytest.warns(None) as record:
- x, y = np.meshgrid(np.linspace(-2, 2, 4), np.linspace(-2, 2, 4))
- r = np.hypot(x, y)
- plt.figure()
- cs = plt.contour(x, y, r)
- plt.clabel(cs)
- assert len(record) == 0
- @image_comparison(['contour_log_extension.png'],
- remove_text=True, style='mpl20')
- def test_contourf_log_extension():
- # Test that contourf with lognorm is extended correctly
- fig = plt.figure(figsize=(10, 5))
- fig.subplots_adjust(left=0.05, right=0.95)
- ax1 = fig.add_subplot(131)
- ax2 = fig.add_subplot(132)
- ax3 = fig.add_subplot(133)
- # make data set with large range e.g. between 1e-8 and 1e10
- data_exp = np.linspace(-7.5, 9.5, 1200)
- data = np.power(10, data_exp).reshape(30, 40)
- # make manual levels e.g. between 1e-4 and 1e-6
- levels_exp = np.arange(-4., 7.)
- levels = np.power(10., levels_exp)
- # original data
- c1 = ax1.contourf(data,
- norm=LogNorm(vmin=data.min(), vmax=data.max()))
- # just show data in levels
- c2 = ax2.contourf(data, levels=levels,
- norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
- extend='neither')
- # extend data from levels
- c3 = ax3.contourf(data, levels=levels,
- norm=LogNorm(vmin=levels.min(), vmax=levels.max()),
- extend='both')
- cb = plt.colorbar(c1, ax=ax1)
- assert cb.ax.get_ylim() == (1e-8, 1e10)
- cb = plt.colorbar(c2, ax=ax2)
- assert cb.ax.get_ylim() == (1e-4, 1e6)
- cb = plt.colorbar(c3, ax=ax3)
- assert_array_almost_equal(cb.ax.get_ylim(),
- [3.162277660168379e-05, 3162277.660168383], 2)
- @image_comparison(['contour_addlines.png'],
- remove_text=True, style='mpl20', tol=0.03)
- # tolerance is because image changed minutely when tick finding on
- # colorbars was cleaned up...
- def test_contour_addlines():
- fig, ax = plt.subplots()
- np.random.seed(19680812)
- X = np.random.rand(10, 10)*10000
- pcm = ax.pcolormesh(X)
- # add 1000 to make colors visible...
- cont = ax.contour(X+1000)
- cb = fig.colorbar(pcm)
- cb.add_lines(cont)
- assert_array_almost_equal(cb.ax.get_ylim(), [114.3091, 9972.30735], 3)
- @image_comparison(baseline_images=['contour_uneven'],
- extensions=['png'], remove_text=True, style='mpl20')
- def test_contour_uneven():
- z = np.arange(24).reshape(4, 6)
- fig, axs = plt.subplots(1, 2)
- ax = axs[0]
- cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
- fig.colorbar(cs, ax=ax, spacing='proportional')
- ax = axs[1]
- cs = ax.contourf(z, levels=[2, 4, 6, 10, 20])
- fig.colorbar(cs, ax=ax, spacing='uniform')
|