1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156 |
- from contextlib import ExitStack
- from copy import copy
- import io
- import os
- from pathlib import Path
- import platform
- import sys
- import urllib.request
- import warnings
- import numpy as np
- from numpy import ma
- from numpy.testing import assert_array_equal
- from matplotlib import (
- colors, image as mimage, patches, pyplot as plt, style,
- rc_context, rcParams)
- from matplotlib.cbook import MatplotlibDeprecationWarning
- from matplotlib.image import (AxesImage, BboxImage, FigureImage,
- NonUniformImage, PcolorImage)
- from matplotlib.testing.decorators import check_figures_equal, image_comparison
- from matplotlib.transforms import Bbox, Affine2D, TransformedBbox
- import pytest
- @image_comparison(['image_interps'], style='mpl20')
- def test_image_interps():
- 'make the basic nearest, bilinear and bicubic interps'
- # Remove this line when this test image is regenerated.
- plt.rcParams['text.kerning_factor'] = 6
- X = np.arange(100)
- X = X.reshape(5, 20)
- fig = plt.figure()
- ax1 = fig.add_subplot(311)
- ax1.imshow(X, interpolation='nearest')
- ax1.set_title('three interpolations')
- ax1.set_ylabel('nearest')
- ax2 = fig.add_subplot(312)
- ax2.imshow(X, interpolation='bilinear')
- ax2.set_ylabel('bilinear')
- ax3 = fig.add_subplot(313)
- ax3.imshow(X, interpolation='bicubic')
- ax3.set_ylabel('bicubic')
- @image_comparison(['interp_alpha.png'], remove_text=True)
- def test_alpha_interp():
- 'Test the interpolation of the alpha channel on RGBA images'
- fig, (axl, axr) = plt.subplots(1, 2)
- # full green image
- img = np.zeros((5, 5, 4))
- img[..., 1] = np.ones((5, 5))
- # transparent under main diagonal
- img[..., 3] = np.tril(np.ones((5, 5), dtype=np.uint8))
- axl.imshow(img, interpolation="none")
- axr.imshow(img, interpolation="bilinear")
- @image_comparison(['interp_nearest_vs_none'],
- extensions=['pdf', 'svg'], remove_text=True)
- def test_interp_nearest_vs_none():
- 'Test the effect of "nearest" and "none" interpolation'
- # Setting dpi to something really small makes the difference very
- # visible. This works fine with pdf, since the dpi setting doesn't
- # affect anything but images, but the agg output becomes unusably
- # small.
- rcParams['savefig.dpi'] = 3
- X = np.array([[[218, 165, 32], [122, 103, 238]],
- [[127, 255, 0], [255, 99, 71]]], dtype=np.uint8)
- fig = plt.figure()
- ax1 = fig.add_subplot(121)
- ax1.imshow(X, interpolation='none')
- ax1.set_title('interpolation none')
- ax2 = fig.add_subplot(122)
- ax2.imshow(X, interpolation='nearest')
- ax2.set_title('interpolation nearest')
- def do_figimage(suppressComposite):
- """Helper for the next two tests."""
- fig = plt.figure(figsize=(2, 2), dpi=100)
- fig.suppressComposite = suppressComposite
- x, y = np.ix_(np.arange(100) / 100.0, np.arange(100) / 100)
- z = np.sin(x**2 + y**2 - x*y)
- c = np.sin(20*x**2 + 50*y**2)
- img = z + c/5
- fig.figimage(img, xo=0, yo=0, origin='lower')
- fig.figimage(img[::-1, :], xo=0, yo=100, origin='lower')
- fig.figimage(img[:, ::-1], xo=100, yo=0, origin='lower')
- fig.figimage(img[::-1, ::-1], xo=100, yo=100, origin='lower')
- @image_comparison(['figimage-0'], extensions=['png', 'pdf'])
- def test_figimage0():
- suppressComposite = False
- do_figimage(suppressComposite)
- @image_comparison(['figimage-1'], extensions=['png', 'pdf'])
- def test_figimage1():
- suppressComposite = True
- do_figimage(suppressComposite)
- def test_image_python_io():
- fig, ax = plt.subplots()
- ax.plot([1, 2, 3])
- buffer = io.BytesIO()
- fig.savefig(buffer)
- buffer.seek(0)
- plt.imread(buffer)
- @check_figures_equal(extensions=['png'])
- def test_imshow_subsample(fig_test, fig_ref):
- # data is bigger than figure, so subsampling with hanning
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 5), int(dpi * 5))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(2, 2)
- axs = fig_test.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='antialiased')
- axs = fig_ref.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='hanning')
- @check_figures_equal(extensions=['png'])
- def test_imshow_samesample(fig_test, fig_ref):
- # exact resample, so should be same as nearest....
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 5), int(dpi * 5))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(5, 5)
- axs = fig_test.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='antialiased')
- axs = fig_ref.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='nearest')
- @check_figures_equal(extensions=['png'])
- def test_imshow_doublesample(fig_test, fig_ref):
- # should be exactly a double sample, so should use nearest neighbour
- # which is the same as "none"
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 5), int(dpi * 5))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(10, 10)
- axs = fig_test.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='antialiased')
- axs = fig_ref.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='nearest')
- @check_figures_equal(extensions=['png'])
- def test_imshow_upsample(fig_test, fig_ref):
- # should be less than 3 upsample, so should be nearest...
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 3), int(dpi * 3))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(2.9, 2.9)
- axs = fig_test.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='antialiased')
- axs = fig_ref.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='hanning')
- @check_figures_equal(extensions=['png'])
- def test_imshow_upsample3(fig_test, fig_ref):
- # should be greater than 3 upsample, so should be nearest...
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 3), int(dpi * 3))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(9.1, 9.1)
- axs = fig_test.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='antialiased')
- axs = fig_ref.subplots()
- axs.set_position([0, 0, 1, 1])
- axs.imshow(A, interpolation='nearest')
- @check_figures_equal(extensions=['png'])
- def test_imshow_zoom(fig_test, fig_ref):
- # should be less than 3 upsample, so should be nearest...
- np.random.seed(19680801)
- dpi = 100
- A = np.random.rand(int(dpi * 3), int(dpi * 3))
- for fig in [fig_test, fig_ref]:
- fig.set_size_inches(2.9, 2.9)
- axs = fig_test.subplots()
- axs.imshow(A, interpolation='nearest')
- axs.set_xlim([10, 20])
- axs.set_ylim([10, 20])
- axs = fig_ref.subplots()
- axs.imshow(A, interpolation='antialiased')
- axs.set_xlim([10, 20])
- axs.set_ylim([10, 20])
- @check_figures_equal()
- def test_imshow_pil(fig_test, fig_ref):
- style.use("default")
- PIL = pytest.importorskip("PIL")
- # Pillow<=6.0 fails to open pathlib.Paths on Windows (pillow#3823), and
- # Matplotlib's builtin png opener doesn't handle them either.
- png_path = str(
- Path(__file__).parent / "baseline_images/pngsuite/basn3p04.png")
- tiff_path = str(
- Path(__file__).parent / "baseline_images/test_image/uint16.tif")
- axs = fig_test.subplots(2)
- axs[0].imshow(PIL.Image.open(png_path))
- axs[1].imshow(PIL.Image.open(tiff_path))
- axs = fig_ref.subplots(2)
- axs[0].imshow(plt.imread(png_path))
- axs[1].imshow(plt.imread(tiff_path))
- def test_imread_pil_uint16():
- pytest.importorskip("PIL")
- img = plt.imread(os.path.join(os.path.dirname(__file__),
- 'baseline_images', 'test_image', 'uint16.tif'))
- assert img.dtype == np.uint16
- assert np.sum(img) == 134184960
- def test_imread_fspath():
- pytest.importorskip("PIL")
- img = plt.imread(
- Path(__file__).parent / 'baseline_images/test_image/uint16.tif')
- assert img.dtype == np.uint16
- assert np.sum(img) == 134184960
- @pytest.mark.parametrize("fmt", ["png", "jpg", "jpeg", "tiff"])
- def test_imsave(fmt):
- if fmt in ["jpg", "jpeg", "tiff"]:
- pytest.importorskip("PIL")
- has_alpha = fmt not in ["jpg", "jpeg"]
- # The goal here is that the user can specify an output logical DPI
- # for the image, but this will not actually add any extra pixels
- # to the image, it will merely be used for metadata purposes.
- # So we do the traditional case (dpi == 1), and the new case (dpi
- # == 100) and read the resulting PNG files back in and make sure
- # the data is 100% identical.
- np.random.seed(1)
- # The height of 1856 pixels was selected because going through creating an
- # actual dpi=100 figure to save the image to a Pillow-provided format would
- # cause a rounding error resulting in a final image of shape 1855.
- data = np.random.rand(1856, 2)
- buff_dpi1 = io.BytesIO()
- plt.imsave(buff_dpi1, data, format=fmt, dpi=1)
- buff_dpi100 = io.BytesIO()
- plt.imsave(buff_dpi100, data, format=fmt, dpi=100)
- buff_dpi1.seek(0)
- arr_dpi1 = plt.imread(buff_dpi1, format=fmt)
- buff_dpi100.seek(0)
- arr_dpi100 = plt.imread(buff_dpi100, format=fmt)
- assert arr_dpi1.shape == (1856, 2, 3 + has_alpha)
- assert arr_dpi100.shape == (1856, 2, 3 + has_alpha)
- assert_array_equal(arr_dpi1, arr_dpi100)
- @pytest.mark.parametrize("fmt", ["png", "pdf", "ps", "eps", "svg"])
- def test_imsave_fspath(fmt):
- plt.imsave(Path(os.devnull), np.array([[0, 1]]), format=fmt)
- def test_imsave_color_alpha():
- # Test that imsave accept arrays with ndim=3 where the third dimension is
- # color and alpha without raising any exceptions, and that the data is
- # acceptably preserved through a save/read roundtrip.
- np.random.seed(1)
- for origin in ['lower', 'upper']:
- data = np.random.rand(16, 16, 4)
- buff = io.BytesIO()
- plt.imsave(buff, data, origin=origin, format="png")
- buff.seek(0)
- arr_buf = plt.imread(buff)
- # Recreate the float -> uint8 conversion of the data
- # We can only expect to be the same with 8 bits of precision,
- # since that's what the PNG file used.
- data = (255*data).astype('uint8')
- if origin == 'lower':
- data = data[::-1]
- arr_buf = (255*arr_buf).astype('uint8')
- assert_array_equal(data, arr_buf)
- def test_imsave_pil_kwargs_png():
- Image = pytest.importorskip("PIL.Image")
- from PIL.PngImagePlugin import PngInfo
- buf = io.BytesIO()
- pnginfo = PngInfo()
- pnginfo.add_text("Software", "test")
- plt.imsave(buf, [[0, 1], [2, 3]],
- format="png", pil_kwargs={"pnginfo": pnginfo})
- im = Image.open(buf)
- assert im.info["Software"] == "test"
- def test_imsave_pil_kwargs_tiff():
- Image = pytest.importorskip("PIL.Image")
- from PIL.TiffTags import TAGS_V2 as TAGS
- buf = io.BytesIO()
- pil_kwargs = {"description": "test image"}
- plt.imsave(buf, [[0, 1], [2, 3]], format="tiff", pil_kwargs=pil_kwargs)
- im = Image.open(buf)
- tags = {TAGS[k].name: v for k, v in im.tag_v2.items()}
- assert tags["ImageDescription"] == "test image"
- @image_comparison(['image_alpha'], remove_text=True)
- def test_image_alpha():
- plt.figure()
- np.random.seed(0)
- Z = np.random.rand(6, 6)
- plt.subplot(131)
- plt.imshow(Z, alpha=1.0, interpolation='none')
- plt.subplot(132)
- plt.imshow(Z, alpha=0.5, interpolation='none')
- plt.subplot(133)
- plt.imshow(Z, alpha=0.5, interpolation='nearest')
- def test_cursor_data():
- from matplotlib.backend_bases import MouseEvent
- fig, ax = plt.subplots()
- im = ax.imshow(np.arange(100).reshape(10, 10), origin='upper')
- x, y = 4, 4
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) == 44
- # Now try for a point outside the image
- # Tests issue #4957
- x, y = 10.1, 4
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) is None
- # Hmm, something is wrong here... I get 0, not None...
- # But, this works further down in the tests with extents flipped
- #x, y = 0.1, -0.1
- #xdisp, ydisp = ax.transData.transform([x, y])
- #event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- #z = im.get_cursor_data(event)
- #assert z is None, "Did not get None, got %d" % z
- ax.clear()
- # Now try with the extents flipped.
- im = ax.imshow(np.arange(100).reshape(10, 10), origin='lower')
- x, y = 4, 4
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) == 44
- fig, ax = plt.subplots()
- im = ax.imshow(np.arange(100).reshape(10, 10), extent=[0, 0.5, 0, 0.5])
- x, y = 0.25, 0.25
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) == 55
- # Now try for a point outside the image
- # Tests issue #4957
- x, y = 0.75, 0.25
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) is None
- x, y = 0.01, -0.01
- xdisp, ydisp = ax.transData.transform([x, y])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) is None
- @pytest.mark.parametrize(
- "data, text_without_colorbar, text_with_colorbar", [
- ([[10001, 10000]], "[1e+04]", "[10001]"),
- ([[.123, .987]], "[0.123]", "[0.123]"),
- ])
- def test_format_cursor_data(data, text_without_colorbar, text_with_colorbar):
- from matplotlib.backend_bases import MouseEvent
- fig, ax = plt.subplots()
- im = ax.imshow(data)
- xdisp, ydisp = ax.transData.transform([0, 0])
- event = MouseEvent('motion_notify_event', fig.canvas, xdisp, ydisp)
- assert im.get_cursor_data(event) == data[0][0]
- assert im.format_cursor_data(im.get_cursor_data(event)) \
- == text_without_colorbar
- fig.colorbar(im)
- fig.canvas.draw() # This is necessary to set up the colorbar formatter.
- assert im.get_cursor_data(event) == data[0][0]
- assert im.format_cursor_data(im.get_cursor_data(event)) \
- == text_with_colorbar
- @image_comparison(['image_clip'], style='mpl20')
- def test_image_clip():
- d = [[1, 2], [3, 4]]
- fig, ax = plt.subplots()
- im = ax.imshow(d)
- patch = patches.Circle((0, 0), radius=1, transform=ax.transData)
- im.set_clip_path(patch)
- @image_comparison(['image_cliprect'], style='mpl20')
- def test_image_cliprect():
- import matplotlib.patches as patches
- fig, ax = plt.subplots()
- d = [[1, 2], [3, 4]]
- im = ax.imshow(d, extent=(0, 5, 0, 5))
- rect = patches.Rectangle(
- xy=(1, 1), width=2, height=2, transform=im.axes.transData)
- im.set_clip_path(rect)
- @image_comparison(['imshow'], remove_text=True, style='mpl20')
- def test_imshow():
- fig, ax = plt.subplots()
- arr = np.arange(100).reshape((10, 10))
- ax.imshow(arr, interpolation="bilinear", extent=(1, 2, 1, 2))
- ax.set_xlim(0, 3)
- ax.set_ylim(0, 3)
- @image_comparison(['no_interpolation_origin'], remove_text=True)
- def test_no_interpolation_origin():
- fig, axs = plt.subplots(2)
- axs[0].imshow(np.arange(100).reshape((2, 50)), origin="lower",
- interpolation='none')
- axs[1].imshow(np.arange(100).reshape((2, 50)), interpolation='none')
- @image_comparison(['image_shift'], remove_text=True, extensions=['pdf', 'svg'])
- def test_image_shift():
- from matplotlib.colors import LogNorm
- imgData = [[1 / x + 1 / y for x in range(1, 100)] for y in range(1, 100)]
- tMin = 734717.945208
- tMax = 734717.946366
- fig, ax = plt.subplots()
- ax.imshow(imgData, norm=LogNorm(), interpolation='none',
- extent=(tMin, tMax, 1, 100))
- ax.set_aspect('auto')
- def test_image_edges():
- f = plt.figure(figsize=[1, 1])
- ax = f.add_axes([0, 0, 1, 1], frameon=False)
- data = np.tile(np.arange(12), 15).reshape(20, 9)
- im = ax.imshow(data, origin='upper', extent=[-10, 10, -10, 10],
- interpolation='none', cmap='gray')
- x = y = 2
- ax.set_xlim([-x, x])
- ax.set_ylim([-y, y])
- ax.set_xticks([])
- ax.set_yticks([])
- buf = io.BytesIO()
- f.savefig(buf, facecolor=(0, 1, 0))
- buf.seek(0)
- im = plt.imread(buf)
- r, g, b, a = sum(im[:, 0])
- r, g, b, a = sum(im[:, -1])
- assert g != 100, 'Expected a non-green edge - but sadly, it was.'
- @image_comparison(['image_composite_background'],
- remove_text=True, style='mpl20')
- def test_image_composite_background():
- fig, ax = plt.subplots()
- arr = np.arange(12).reshape(4, 3)
- ax.imshow(arr, extent=[0, 2, 15, 0])
- ax.imshow(arr, extent=[4, 6, 15, 0])
- ax.set_facecolor((1, 0, 0, 0.5))
- ax.set_xlim([0, 12])
- @image_comparison(['image_composite_alpha'], remove_text=True)
- def test_image_composite_alpha():
- """
- Tests that the alpha value is recognized and correctly applied in the
- process of compositing images together.
- """
- fig, ax = plt.subplots()
- arr = np.zeros((11, 21, 4))
- arr[:, :, 0] = 1
- arr[:, :, 3] = np.concatenate(
- (np.arange(0, 1.1, 0.1), np.arange(0, 1, 0.1)[::-1]))
- arr2 = np.zeros((21, 11, 4))
- arr2[:, :, 0] = 1
- arr2[:, :, 1] = 1
- arr2[:, :, 3] = np.concatenate(
- (np.arange(0, 1.1, 0.1), np.arange(0, 1, 0.1)[::-1]))[:, np.newaxis]
- ax.imshow(arr, extent=[1, 2, 5, 0], alpha=0.3)
- ax.imshow(arr, extent=[2, 3, 5, 0], alpha=0.6)
- ax.imshow(arr, extent=[3, 4, 5, 0])
- ax.imshow(arr2, extent=[0, 5, 1, 2])
- ax.imshow(arr2, extent=[0, 5, 2, 3], alpha=0.6)
- ax.imshow(arr2, extent=[0, 5, 3, 4], alpha=0.3)
- ax.set_facecolor((0, 0.5, 0, 1))
- ax.set_xlim([0, 5])
- ax.set_ylim([5, 0])
- @image_comparison(['rasterize_10dpi'],
- extensions=['pdf', 'svg'], remove_text=True, style='mpl20')
- def test_rasterize_dpi():
- # This test should check rasterized rendering with high output resolution.
- # It plots a rasterized line and a normal image with imshow. So it will
- # catch when images end up in the wrong place in case of non-standard dpi
- # setting. Instead of high-res rasterization I use low-res. Therefore
- # the fact that the resolution is non-standard is easily checked by
- # image_comparison.
- img = np.asarray([[1, 2], [3, 4]])
- fig, axs = plt.subplots(1, 3, figsize=(3, 1))
- axs[0].imshow(img)
- axs[1].plot([0, 1], [0, 1], linewidth=20., rasterized=True)
- axs[1].set(xlim=(0, 1), ylim=(-1, 2))
- axs[2].plot([0, 1], [0, 1], linewidth=20.)
- axs[2].set(xlim=(0, 1), ylim=(-1, 2))
- # Low-dpi PDF rasterization errors prevent proper image comparison tests.
- # Hide detailed structures like the axes spines.
- for ax in axs:
- ax.set_xticks([])
- ax.set_yticks([])
- for spine in ax.spines.values():
- spine.set_visible(False)
- rcParams['savefig.dpi'] = 10
- @image_comparison(['bbox_image_inverted'], remove_text=True, style='mpl20')
- def test_bbox_image_inverted():
- # This is just used to produce an image to feed to BboxImage
- image = np.arange(100).reshape((10, 10))
- fig, ax = plt.subplots()
- bbox_im = BboxImage(
- TransformedBbox(Bbox([[100, 100], [0, 0]]), ax.transData),
- interpolation='nearest')
- bbox_im.set_data(image)
- bbox_im.set_clip_on(False)
- ax.set_xlim(0, 100)
- ax.set_ylim(0, 100)
- ax.add_artist(bbox_im)
- image = np.identity(10)
- bbox_im = BboxImage(TransformedBbox(Bbox([[0.1, 0.2], [0.3, 0.25]]),
- ax.figure.transFigure),
- interpolation='nearest')
- bbox_im.set_data(image)
- bbox_im.set_clip_on(False)
- ax.add_artist(bbox_im)
- def test_get_window_extent_for_AxisImage():
- # Create a figure of known size (1000x1000 pixels), place an image
- # object at a given location and check that get_window_extent()
- # returns the correct bounding box values (in pixels).
- im = np.array([[0.25, 0.75, 1.0, 0.75], [0.1, 0.65, 0.5, 0.4],
- [0.6, 0.3, 0.0, 0.2], [0.7, 0.9, 0.4, 0.6]])
- fig, ax = plt.subplots(figsize=(10, 10), dpi=100)
- ax.set_position([0, 0, 1, 1])
- ax.set_xlim(0, 1)
- ax.set_ylim(0, 1)
- im_obj = ax.imshow(
- im, extent=[0.4, 0.7, 0.2, 0.9], interpolation='nearest')
- fig.canvas.draw()
- renderer = fig.canvas.renderer
- im_bbox = im_obj.get_window_extent(renderer)
- assert_array_equal(im_bbox.get_points(), [[400, 200], [700, 900]])
- @image_comparison(['zoom_and_clip_upper_origin.png'],
- remove_text=True, style='mpl20')
- def test_zoom_and_clip_upper_origin():
- image = np.arange(100)
- image = image.reshape((10, 10))
- fig, ax = plt.subplots()
- ax.imshow(image)
- ax.set_ylim(2.0, -0.5)
- ax.set_xlim(-0.5, 2.0)
- def test_nonuniformimage_setcmap():
- ax = plt.gca()
- im = NonUniformImage(ax)
- im.set_cmap('Blues')
- def test_nonuniformimage_setnorm():
- ax = plt.gca()
- im = NonUniformImage(ax)
- im.set_norm(plt.Normalize())
- def test_jpeg_2d():
- Image = pytest.importorskip('PIL.Image')
- # smoke test that mode-L pillow images work.
- imd = np.ones((10, 10), dtype='uint8')
- for i in range(10):
- imd[i, :] = np.linspace(0.0, 1.0, 10) * 255
- im = Image.new('L', (10, 10))
- im.putdata(imd.flatten())
- fig, ax = plt.subplots()
- ax.imshow(im)
- def test_jpeg_alpha():
- Image = pytest.importorskip('PIL.Image')
- plt.figure(figsize=(1, 1), dpi=300)
- # Create an image that is all black, with a gradient from 0-1 in
- # the alpha channel from left to right.
- im = np.zeros((300, 300, 4), dtype=float)
- im[..., 3] = np.linspace(0.0, 1.0, 300)
- plt.figimage(im)
- buff = io.BytesIO()
- plt.savefig(buff, facecolor="red", format='jpg', dpi=300)
- buff.seek(0)
- image = Image.open(buff)
- # If this fails, there will be only one color (all black). If this
- # is working, we should have all 256 shades of grey represented.
- num_colors = len(image.getcolors(256))
- assert 175 <= num_colors <= 185
- # The fully transparent part should be red.
- corner_pixel = image.getpixel((0, 0))
- assert corner_pixel == (254, 0, 0)
- def test_nonuniformimage_setdata():
- ax = plt.gca()
- im = NonUniformImage(ax)
- x = np.arange(3, dtype=float)
- y = np.arange(4, dtype=float)
- z = np.arange(12, dtype=float).reshape((4, 3))
- im.set_data(x, y, z)
- x[0] = y[0] = z[0, 0] = 9.9
- assert im._A[0, 0] == im._Ax[0] == im._Ay[0] == 0, 'value changed'
- def test_axesimage_setdata():
- ax = plt.gca()
- im = AxesImage(ax)
- z = np.arange(12, dtype=float).reshape((4, 3))
- im.set_data(z)
- z[0, 0] = 9.9
- assert im._A[0, 0] == 0, 'value changed'
- def test_figureimage_setdata():
- fig = plt.gcf()
- im = FigureImage(fig)
- z = np.arange(12, dtype=float).reshape((4, 3))
- im.set_data(z)
- z[0, 0] = 9.9
- assert im._A[0, 0] == 0, 'value changed'
- def test_pcolorimage_setdata():
- ax = plt.gca()
- im = PcolorImage(ax)
- x = np.arange(3, dtype=float)
- y = np.arange(4, dtype=float)
- z = np.arange(6, dtype=float).reshape((3, 2))
- im.set_data(x, y, z)
- x[0] = y[0] = z[0, 0] = 9.9
- assert im._A[0, 0] == im._Ax[0] == im._Ay[0] == 0, 'value changed'
- def test_minimized_rasterized():
- # This ensures that the rasterized content in the colorbars is
- # only as thick as the colorbar, and doesn't extend to other parts
- # of the image. See #5814. While the original bug exists only
- # in Postscript, the best way to detect it is to generate SVG
- # and then parse the output to make sure the two colorbar images
- # are the same size.
- from xml.etree import ElementTree
- np.random.seed(0)
- data = np.random.rand(10, 10)
- fig, ax = plt.subplots(1, 2)
- p1 = ax[0].pcolormesh(data)
- p2 = ax[1].pcolormesh(data)
- plt.colorbar(p1, ax=ax[0])
- plt.colorbar(p2, ax=ax[1])
- buff = io.BytesIO()
- plt.savefig(buff, format='svg')
- buff = io.BytesIO(buff.getvalue())
- tree = ElementTree.parse(buff)
- width = None
- for image in tree.iter('image'):
- if width is None:
- width = image['width']
- else:
- if image['width'] != width:
- assert False
- def test_load_from_url():
- path = Path(__file__).parent / "baseline_images/test_image/imshow.png"
- url = ('file:'
- + ('///' if sys.platform == 'win32' else '')
- + path.resolve().as_posix())
- plt.imread(url)
- plt.imread(urllib.request.urlopen(url))
- @image_comparison(['log_scale_image'], remove_text=True)
- def test_log_scale_image():
- Z = np.zeros((10, 10))
- Z[::2] = 1
- fig, ax = plt.subplots()
- ax.imshow(Z, extent=[1, 100, 1, 100], cmap='viridis', vmax=1, vmin=-1,
- aspect='auto')
- ax.set(yscale='log')
- @image_comparison(['rotate_image'], remove_text=True)
- def test_rotate_image():
- delta = 0.25
- x = y = np.arange(-3.0, 3.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
- Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
- (2 * np.pi * 0.5 * 1.5))
- Z = Z2 - Z1 # difference of Gaussians
- fig, ax1 = plt.subplots(1, 1)
- im1 = ax1.imshow(Z, interpolation='none', cmap='viridis',
- origin='lower',
- extent=[-2, 4, -3, 2], clip_on=True)
- trans_data2 = Affine2D().rotate_deg(30) + ax1.transData
- im1.set_transform(trans_data2)
- # display intended extent of the image
- x1, x2, y1, y2 = im1.get_extent()
- ax1.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1], "r--", lw=3,
- transform=trans_data2)
- ax1.set_xlim(2, 5)
- ax1.set_ylim(0, 4)
- def test_image_preserve_size():
- buff = io.BytesIO()
- im = np.zeros((481, 321))
- plt.imsave(buff, im, format="png")
- buff.seek(0)
- img = plt.imread(buff)
- assert img.shape[:2] == im.shape
- def test_image_preserve_size2():
- n = 7
- data = np.identity(n, float)
- fig = plt.figure(figsize=(n, n), frameon=False)
- ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
- ax.set_axis_off()
- fig.add_axes(ax)
- ax.imshow(data, interpolation='nearest', origin='lower', aspect='auto')
- buff = io.BytesIO()
- fig.savefig(buff, dpi=1)
- buff.seek(0)
- img = plt.imread(buff)
- assert img.shape == (7, 7, 4)
- assert_array_equal(np.asarray(img[:, :, 0], bool),
- np.identity(n, bool)[::-1])
- @image_comparison(['mask_image_over_under.png'], remove_text=True)
- def test_mask_image_over_under():
- delta = 0.025
- x = y = np.arange(-3.0, 3.0, delta)
- X, Y = np.meshgrid(x, y)
- Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
- Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
- (2 * np.pi * 0.5 * 1.5))
- Z = 10*(Z2 - Z1) # difference of Gaussians
- palette = copy(plt.cm.gray)
- palette.set_over('r', 1.0)
- palette.set_under('g', 1.0)
- palette.set_bad('b', 1.0)
- Zm = ma.masked_where(Z > 1.2, Z)
- fig, (ax1, ax2) = plt.subplots(1, 2)
- im = ax1.imshow(Zm, interpolation='bilinear',
- cmap=palette,
- norm=colors.Normalize(vmin=-1.0, vmax=1.0, clip=False),
- origin='lower', extent=[-3, 3, -3, 3])
- ax1.set_title('Green=low, Red=high, Blue=bad')
- fig.colorbar(im, extend='both', orientation='horizontal',
- ax=ax1, aspect=10)
- im = ax2.imshow(Zm, interpolation='nearest',
- cmap=palette,
- norm=colors.BoundaryNorm([-1, -0.5, -0.2, 0, 0.2, 0.5, 1],
- ncolors=256, clip=False),
- origin='lower', extent=[-3, 3, -3, 3])
- ax2.set_title('With BoundaryNorm')
- fig.colorbar(im, extend='both', spacing='proportional',
- orientation='horizontal', ax=ax2, aspect=10)
- @image_comparison(['mask_image'], remove_text=True)
- def test_mask_image():
- # Test mask image two ways: Using nans and using a masked array.
- fig, (ax1, ax2) = plt.subplots(1, 2)
- A = np.ones((5, 5))
- A[1:2, 1:2] = np.nan
- ax1.imshow(A, interpolation='nearest')
- A = np.zeros((5, 5), dtype=bool)
- A[1:2, 1:2] = True
- A = np.ma.masked_array(np.ones((5, 5), dtype=np.uint16), A)
- ax2.imshow(A, interpolation='nearest')
- @image_comparison(['imshow_endianess.png'], remove_text=True)
- def test_imshow_endianess():
- x = np.arange(10)
- X, Y = np.meshgrid(x, x)
- Z = np.hypot(X - 5, Y - 5)
- fig, (ax1, ax2) = plt.subplots(1, 2)
- kwargs = dict(origin="lower", interpolation='nearest', cmap='viridis')
- ax1.imshow(Z.astype('<f8'), **kwargs)
- ax2.imshow(Z.astype('>f8'), **kwargs)
- @image_comparison(['imshow_masked_interpolation'],
- tol={'aarch64': 0.02}.get(platform.machine(), 0.0),
- remove_text=True, style='mpl20')
- def test_imshow_masked_interpolation():
- cm = copy(plt.get_cmap('viridis'))
- cm.set_over('r')
- cm.set_under('b')
- cm.set_bad('k')
- N = 20
- n = colors.Normalize(vmin=0, vmax=N*N-1)
- data = np.arange(N*N, dtype='float').reshape(N, N)
- data[5, 5] = -1
- # This will cause crazy ringing for the higher-order
- # interpolations
- data[15, 5] = 1e5
- # data[3, 3] = np.nan
- data[15, 15] = np.inf
- mask = np.zeros_like(data).astype('bool')
- mask[5, 15] = True
- data = np.ma.masked_array(data, mask)
- fig, ax_grid = plt.subplots(3, 6)
- interps = sorted(mimage._interpd_)
- interps.remove('antialiased')
- for interp, ax in zip(interps, ax_grid.ravel()):
- ax.set_title(interp)
- ax.imshow(data, norm=n, cmap=cm, interpolation=interp)
- ax.axis('off')
- def test_imshow_no_warn_invalid():
- with warnings.catch_warnings(record=True) as warns:
- warnings.simplefilter("always")
- plt.imshow([[1, 2], [3, np.nan]])
- assert len(warns) == 0
- @pytest.mark.parametrize(
- 'dtype', [np.dtype(s) for s in 'u2 u4 i2 i4 i8 f4 f8'.split()])
- def test_imshow_clips_rgb_to_valid_range(dtype):
- arr = np.arange(300, dtype=dtype).reshape((10, 10, 3))
- if dtype.kind != 'u':
- arr -= 10
- too_low = arr < 0
- too_high = arr > 255
- if dtype.kind == 'f':
- arr = arr / 255
- _, ax = plt.subplots()
- out = ax.imshow(arr).get_array()
- assert (out[too_low] == 0).all()
- if dtype.kind == 'f':
- assert (out[too_high] == 1).all()
- assert out.dtype.kind == 'f'
- else:
- assert (out[too_high] == 255).all()
- assert out.dtype == np.uint8
- @image_comparison(['imshow_flatfield.png'], remove_text=True, style='mpl20')
- def test_imshow_flatfield():
- fig, ax = plt.subplots()
- im = ax.imshow(np.ones((5, 5)), interpolation='nearest')
- im.set_clim(.5, 1.5)
- @image_comparison(['imshow_bignumbers.png'], remove_text=True, style='mpl20')
- def test_imshow_bignumbers():
- rcParams['image.interpolation'] = 'nearest'
- # putting a big number in an array of integers shouldn't
- # ruin the dynamic range of the resolved bits.
- fig, ax = plt.subplots()
- img = np.array([[1, 2, 1e12], [3, 1, 4]], dtype=np.uint64)
- pc = ax.imshow(img)
- pc.set_clim(0, 5)
- @image_comparison(['imshow_bignumbers_real.png'],
- remove_text=True, style='mpl20')
- def test_imshow_bignumbers_real():
- rcParams['image.interpolation'] = 'nearest'
- # putting a big number in an array of integers shouldn't
- # ruin the dynamic range of the resolved bits.
- fig, ax = plt.subplots()
- img = np.array([[2., 1., 1.e22], [4., 1., 3.]])
- pc = ax.imshow(img)
- pc.set_clim(0, 5)
- @pytest.mark.parametrize(
- "make_norm",
- [colors.Normalize,
- colors.LogNorm,
- lambda: colors.SymLogNorm(1),
- lambda: colors.PowerNorm(1)])
- def test_empty_imshow(make_norm):
- fig, ax = plt.subplots()
- with pytest.warns(UserWarning,
- match="Attempting to set identical left == right"):
- im = ax.imshow([[]], norm=make_norm())
- im.set_extent([-5, 5, -5, 5])
- fig.canvas.draw()
- with pytest.raises(RuntimeError):
- im.make_image(fig._cachedRenderer)
- def test_imshow_float128():
- fig, ax = plt.subplots()
- ax.imshow(np.zeros((3, 3), dtype=np.longdouble))
- with (ExitStack() if np.can_cast(np.longdouble, np.float64, "equiv")
- else pytest.warns(UserWarning)):
- # Ensure that drawing doesn't cause crash.
- fig.canvas.draw()
- def test_imshow_bool():
- fig, ax = plt.subplots()
- ax.imshow(np.array([[True, False], [False, True]], dtype=bool))
- def test_full_invalid():
- fig, ax = plt.subplots()
- ax.imshow(np.full((10, 10), np.nan))
- with pytest.warns(UserWarning):
- fig.canvas.draw()
- @pytest.mark.parametrize("fmt,counted",
- [("ps", b" colorimage"), ("svg", b"<image")])
- @pytest.mark.parametrize("composite_image,count", [(True, 1), (False, 2)])
- def test_composite(fmt, counted, composite_image, count):
- # Test that figures can be saved with and without combining multiple images
- # (on a single set of axes) into a single composite image.
- X, Y = np.meshgrid(np.arange(-5, 5, 1), np.arange(-5, 5, 1))
- Z = np.sin(Y ** 2)
- fig, ax = plt.subplots()
- ax.set_xlim(0, 3)
- ax.imshow(Z, extent=[0, 1, 0, 1])
- ax.imshow(Z[::-1], extent=[2, 3, 0, 1])
- plt.rcParams['image.composite_image'] = composite_image
- buf = io.BytesIO()
- fig.savefig(buf, format=fmt)
- assert buf.getvalue().count(counted) == count
- def test_relim():
- fig, ax = plt.subplots()
- ax.imshow([[0]], extent=(0, 1, 0, 1))
- ax.relim()
- ax.autoscale()
- assert ax.get_xlim() == ax.get_ylim() == (0, 1)
- def test_deprecation():
- data = [[1, 2], [3, 4]]
- ax = plt.figure().subplots()
- for obj in [ax, plt]:
- with pytest.warns(None) as record:
- obj.imshow(data)
- assert len(record) == 0
- with pytest.warns(MatplotlibDeprecationWarning):
- obj.imshow(data, shape=None)
- with pytest.warns(MatplotlibDeprecationWarning):
- # Enough arguments to pass "shape" positionally.
- obj.imshow(data, *[None] * 10)
- def test_respects_bbox():
- fig, axs = plt.subplots(2)
- for ax in axs:
- ax.set_axis_off()
- im = axs[1].imshow([[0, 1], [2, 3]], aspect="auto", extent=(0, 1, 0, 1))
- im.set_clip_path(None)
- # Make the image invisible in axs[1], but visible in axs[0] if we pan
- # axs[1] up.
- im.set_clip_box(axs[0].bbox)
- buf_before = io.BytesIO()
- fig.savefig(buf_before, format="rgba")
- assert {*buf_before.getvalue()} == {0xff} # All white.
- axs[1].set(ylim=(-1, 0))
- buf_after = io.BytesIO()
- fig.savefig(buf_after, format="rgba")
- assert buf_before.getvalue() != buf_after.getvalue() # Not all white.
- def test_image_cursor_formatting():
- fig, ax = plt.subplots()
- # Create a dummy image to be able to call format_cursor_data
- im = ax.imshow(np.zeros((4, 4)))
- data = np.ma.masked_array([0], mask=[True])
- assert im.format_cursor_data(data) == '[]'
- data = np.ma.masked_array([0], mask=[False])
- assert im.format_cursor_data(data) == '[0]'
- data = np.nan
- assert im.format_cursor_data(data) == '[nan]'
- @check_figures_equal()
- def test_image_array_alpha(fig_test, fig_ref):
- '''per-pixel alpha channel test'''
- x = np.linspace(0, 1)
- xx, yy = np.meshgrid(x, x)
- zz = np.exp(- 3 * ((xx - 0.5) ** 2) + (yy - 0.7 ** 2))
- alpha = zz / zz.max()
- cmap = plt.get_cmap('viridis')
- ax = fig_test.add_subplot(111)
- ax.imshow(zz, alpha=alpha, cmap=cmap, interpolation='nearest')
- ax = fig_ref.add_subplot(111)
- rgba = cmap(colors.Normalize()(zz))
- rgba[..., -1] = alpha
- ax.imshow(rgba, interpolation='nearest')
|