123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- from matplotlib.cbook import MatplotlibDeprecationWarning
- import matplotlib.pyplot as plt
- from matplotlib.scale import (Log10Transform, InvertedLog10Transform,
- SymmetricalLogTransform)
- from matplotlib.testing.decorators import check_figures_equal, image_comparison
- import numpy as np
- from numpy.testing import assert_allclose
- import io
- import platform
- import pytest
- @check_figures_equal()
- def test_log_scales(fig_test, fig_ref):
- ax_test = fig_test.add_subplot(122, yscale='log', xscale='symlog')
- ax_test.axvline(24.1)
- ax_test.axhline(24.1)
- xlim = ax_test.get_xlim()
- ylim = ax_test.get_ylim()
- ax_ref = fig_ref.add_subplot(122, yscale='log', xscale='symlog')
- ax_ref.set(xlim=xlim, ylim=ylim)
- ax_ref.plot([24.1, 24.1], ylim, 'b')
- ax_ref.plot(xlim, [24.1, 24.1], 'b')
- def test_symlog_mask_nan():
- # Use a transform round-trip to verify that the forward and inverse
- # transforms work, and that they respect nans and/or masking.
- slt = SymmetricalLogTransform(10, 2, 1)
- slti = slt.inverted()
- x = np.arange(-1.5, 5, 0.5)
- out = slti.transform_non_affine(slt.transform_non_affine(x))
- assert_allclose(out, x)
- assert type(out) == type(x)
- x[4] = np.nan
- out = slti.transform_non_affine(slt.transform_non_affine(x))
- assert_allclose(out, x)
- assert type(out) == type(x)
- x = np.ma.array(x)
- out = slti.transform_non_affine(slt.transform_non_affine(x))
- assert_allclose(out, x)
- assert type(out) == type(x)
- x[3] = np.ma.masked
- out = slti.transform_non_affine(slt.transform_non_affine(x))
- assert_allclose(out, x)
- assert type(out) == type(x)
- @image_comparison(['logit_scales.png'], remove_text=True)
- def test_logit_scales():
- fig, ax = plt.subplots()
- # Typical extinction curve for logit
- x = np.array([0.001, 0.003, 0.01, 0.03, 0.1, 0.2, 0.3, 0.4, 0.5,
- 0.6, 0.7, 0.8, 0.9, 0.97, 0.99, 0.997, 0.999])
- y = 1.0 / x
- ax.plot(x, y)
- ax.set_xscale('logit')
- ax.grid(True)
- bbox = ax.get_tightbbox(fig.canvas.get_renderer())
- assert np.isfinite(bbox.x0)
- assert np.isfinite(bbox.y0)
- def test_log_scatter():
- """Issue #1799"""
- fig, ax = plt.subplots(1)
- x = np.arange(10)
- y = np.arange(10) - 1
- ax.scatter(x, y)
- buf = io.BytesIO()
- fig.savefig(buf, format='pdf')
- buf = io.BytesIO()
- fig.savefig(buf, format='eps')
- buf = io.BytesIO()
- fig.savefig(buf, format='svg')
- def test_logscale_subs():
- fig, ax = plt.subplots()
- ax.set_yscale('log', subsy=np.array([2, 3, 4]))
- # force draw
- fig.canvas.draw()
- @image_comparison(['logscale_mask.png'], remove_text=True)
- def test_logscale_mask():
- # Check that zero values are masked correctly on log scales.
- # See github issue 8045
- xs = np.linspace(0, 50, 1001)
- fig, ax = plt.subplots()
- ax.plot(np.exp(-xs**2))
- fig.canvas.draw()
- ax.set(yscale="log")
- def test_extra_kwargs_raise_or_warn():
- fig, ax = plt.subplots()
- # with pytest.raises(TypeError):
- with pytest.warns(MatplotlibDeprecationWarning):
- ax.set_yscale('linear', nonpos='mask')
- with pytest.raises(TypeError):
- ax.set_yscale('log', nonpos='mask')
- # with pytest.raises(TypeError):
- with pytest.warns(MatplotlibDeprecationWarning):
- ax.set_yscale('symlog', nonpos='mask')
- def test_logscale_invert_transform():
- fig, ax = plt.subplots()
- ax.set_yscale('log')
- # get transformation from data to axes
- tform = (ax.transAxes + ax.transData.inverted()).inverted()
- # direct test of log transform inversion
- with pytest.warns(MatplotlibDeprecationWarning):
- assert isinstance(Log10Transform().inverted(), InvertedLog10Transform)
- def test_logscale_transform_repr():
- fig, ax = plt.subplots()
- ax.set_yscale('log')
- repr(ax.transData) # check that repr of log transform succeeds
- # check that repr of log transform succeeds
- with pytest.warns(MatplotlibDeprecationWarning):
- repr(Log10Transform(nonpos='clip'))
- @image_comparison(['logscale_nonpos_values.png'],
- remove_text=True, tol=0.02, style='mpl20')
- def test_logscale_nonpos_values():
- np.random.seed(19680801)
- xs = np.random.normal(size=int(1e3))
- fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
- ax1.hist(xs, range=(-5, 5), bins=10)
- ax1.set_yscale('log')
- ax2.hist(xs, range=(-5, 5), bins=10)
- ax2.set_yscale('log', nonposy='mask')
- xdata = np.arange(0, 10, 0.01)
- ydata = np.exp(-xdata)
- edata = 0.2*(10-xdata)*np.cos(5*xdata)*np.exp(-xdata)
- ax3.fill_between(xdata, ydata - edata, ydata + edata)
- ax3.set_yscale('log')
- x = np.logspace(-1, 1)
- y = x ** 3
- yerr = x**2
- ax4.errorbar(x, y, yerr=yerr)
- ax4.set_yscale('log')
- ax4.set_xscale('log')
- def test_invalid_log_lims():
- # Check that invalid log scale limits are ignored
- fig, ax = plt.subplots()
- ax.scatter(range(0, 4), range(0, 4))
- ax.set_xscale('log')
- original_xlim = ax.get_xlim()
- with pytest.warns(UserWarning):
- ax.set_xlim(left=0)
- assert ax.get_xlim() == original_xlim
- with pytest.warns(UserWarning):
- ax.set_xlim(right=-1)
- assert ax.get_xlim() == original_xlim
- ax.set_yscale('log')
- original_ylim = ax.get_ylim()
- with pytest.warns(UserWarning):
- ax.set_ylim(bottom=0)
- assert ax.get_ylim() == original_ylim
- with pytest.warns(UserWarning):
- ax.set_ylim(top=-1)
- assert ax.get_ylim() == original_ylim
- @image_comparison(['function_scales.png'], remove_text=True, style='mpl20')
- def test_function_scale():
- def inverse(x):
- return x**2
- def forward(x):
- return x**(1/2)
- fig, ax = plt.subplots()
- x = np.arange(1, 1000)
- ax.plot(x, x)
- ax.set_xscale('function', functions=(forward, inverse))
- ax.set_xlim(1, 1000)
|