123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- import base64
- import io
- import numpy as np
- from numpy.testing import assert_array_almost_equal, assert_array_equal
- import pytest
- from matplotlib.testing.decorators import image_comparison
- import matplotlib.pyplot as plt
- from matplotlib import patches, transforms
- from matplotlib.path import Path
- # NOTE: All of these tests assume that path.simplify is set to True
- # (the default)
- @image_comparison(['clipping'], remove_text=True)
- def test_clipping():
- t = np.arange(0.0, 2.0, 0.01)
- s = np.sin(2*np.pi*t)
- fig, ax = plt.subplots()
- ax.plot(t, s, linewidth=1.0)
- ax.set_ylim((-0.20, -0.28))
- @image_comparison(['overflow'], remove_text=True)
- def test_overflow():
- x = np.array([1.0, 2.0, 3.0, 2.0e5])
- y = np.arange(len(x))
- fig, ax = plt.subplots()
- ax.plot(x, y)
- ax.set_xlim(2, 6)
- @image_comparison(['clipping_diamond'], remove_text=True)
- def test_diamond():
- x = np.array([0.0, 1.0, 0.0, -1.0, 0.0])
- y = np.array([1.0, 0.0, -1.0, 0.0, 1.0])
- fig, ax = plt.subplots()
- ax.plot(x, y)
- ax.set_xlim(-0.6, 0.6)
- ax.set_ylim(-0.6, 0.6)
- def test_noise():
- np.random.seed(0)
- x = np.random.uniform(size=50000) * 50
- fig, ax = plt.subplots()
- p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0)
- # Ensure that the path's transform takes the new axes limits into account.
- fig.canvas.draw()
- path = p1[0].get_path()
- transform = p1[0].get_transform()
- path = transform.transform_path(path)
- simplified = path.cleaned(simplify=True)
- assert simplified.vertices.size == 25512
- def test_antiparallel_simplification():
- def _get_simplified(x, y):
- fig, ax = plt.subplots()
- p1 = ax.plot(x, y)
- path = p1[0].get_path()
- transform = p1[0].get_transform()
- path = transform.transform_path(path)
- simplified = path.cleaned(simplify=True)
- simplified = transform.inverted().transform_path(simplified)
- return simplified
- # test ending on a maximum
- x = [0, 0, 0, 0, 0, 1]
- y = [.5, 1, -1, 1, 2, .5]
- simplified = _get_simplified(x, y)
- assert_array_almost_equal([[0., 0.5],
- [0., -1.],
- [0., 2.],
- [1., 0.5]],
- simplified.vertices[:-2, :])
- # test ending on a minimum
- x = [0, 0, 0, 0, 0, 1]
- y = [.5, 1, -1, 1, -2, .5]
- simplified = _get_simplified(x, y)
- assert_array_almost_equal([[0., 0.5],
- [0., 1.],
- [0., -2.],
- [1., 0.5]],
- simplified.vertices[:-2, :])
- # test ending in between
- x = [0, 0, 0, 0, 0, 1]
- y = [.5, 1, -1, 1, 0, .5]
- simplified = _get_simplified(x, y)
- assert_array_almost_equal([[0., 0.5],
- [0., 1.],
- [0., -1.],
- [0., 0.],
- [1., 0.5]],
- simplified.vertices[:-2, :])
- # test no anti-parallel ending at max
- x = [0, 0, 0, 0, 0, 1]
- y = [.5, 1, 2, 1, 3, .5]
- simplified = _get_simplified(x, y)
- assert_array_almost_equal([[0., 0.5],
- [0., 3.],
- [1., 0.5]],
- simplified.vertices[:-2, :])
- # test no anti-parallel ending in middle
- x = [0, 0, 0, 0, 0, 1]
- y = [.5, 1, 2, 1, 1, .5]
- simplified = _get_simplified(x, y)
- assert_array_almost_equal([[0., 0.5],
- [0., 2.],
- [0., 1.],
- [1., 0.5]],
- simplified.vertices[:-2, :])
- # Only consider angles in 0 <= angle <= pi/2, otherwise
- # using min/max will get the expected results out of order:
- # min/max for simplification code depends on original vector,
- # and if angle is outside above range then simplification
- # min/max will be opposite from actual min/max.
- @pytest.mark.parametrize('angle', [0, np.pi/4, np.pi/3, np.pi/2])
- @pytest.mark.parametrize('offset', [0, .5])
- def test_angled_antiparallel(angle, offset):
- scale = 5
- np.random.seed(19680801)
- # get 15 random offsets
- # TODO: guarantee offset > 0 results in some offsets < 0
- vert_offsets = (np.random.rand(15) - offset) * scale
- # always start at 0 so rotation makes sense
- vert_offsets[0] = 0
- # always take the first step the same direction
- vert_offsets[1] = 1
- # compute points along a diagonal line
- x = np.sin(angle) * vert_offsets
- y = np.cos(angle) * vert_offsets
- # will check these later
- x_max = x[1:].max()
- x_min = x[1:].min()
- y_max = y[1:].max()
- y_min = y[1:].min()
- if offset > 0:
- p_expected = Path([[0, 0],
- [x_max, y_max],
- [x_min, y_min],
- [x[-1], y[-1]],
- [0, 0]],
- codes=[1, 2, 2, 2, 0])
- else:
- p_expected = Path([[0, 0],
- [x_max, y_max],
- [x[-1], y[-1]],
- [0, 0]],
- codes=[1, 2, 2, 0])
- p = Path(np.vstack([x, y]).T)
- p2 = p.cleaned(simplify=True)
- assert_array_almost_equal(p_expected.vertices,
- p2.vertices)
- assert_array_equal(p_expected.codes, p2.codes)
- def test_sine_plus_noise():
- np.random.seed(0)
- x = (np.sin(np.linspace(0, np.pi * 2.0, 50000)) +
- np.random.uniform(size=50000) * 0.01)
- fig, ax = plt.subplots()
- p1 = ax.plot(x, solid_joinstyle='round', linewidth=2.0)
- # Ensure that the path's transform takes the new axes limits into account.
- fig.canvas.draw()
- path = p1[0].get_path()
- transform = p1[0].get_transform()
- path = transform.transform_path(path)
- simplified = path.cleaned(simplify=True)
- assert simplified.vertices.size == 25240
- @image_comparison(['simplify_curve'], remove_text=True)
- def test_simplify_curve():
- pp1 = patches.PathPatch(
- Path([(0, 0), (1, 0), (1, 1), (np.nan, 1), (0, 0), (2, 0), (2, 2),
- (0, 0)],
- [Path.MOVETO, Path.CURVE3, Path.CURVE3, Path.CURVE3, Path.CURVE3,
- Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY]),
- fc="none")
- fig, ax = plt.subplots()
- ax.add_patch(pp1)
- ax.set_xlim((0, 2))
- ax.set_ylim((0, 2))
- @image_comparison(['hatch_simplify'], remove_text=True)
- def test_hatch():
- fig, ax = plt.subplots()
- ax.add_patch(plt.Rectangle((0, 0), 1, 1, fill=False, hatch="/"))
- ax.set_xlim((0.45, 0.55))
- ax.set_ylim((0.45, 0.55))
- @image_comparison(['fft_peaks'], remove_text=True)
- def test_fft_peaks():
- fig, ax = plt.subplots()
- t = np.arange(65536)
- p1 = ax.plot(abs(np.fft.fft(np.sin(2*np.pi*.01*t)*np.blackman(len(t)))))
- # Ensure that the path's transform takes the new axes limits into account.
- fig.canvas.draw()
- path = p1[0].get_path()
- transform = p1[0].get_transform()
- path = transform.transform_path(path)
- simplified = path.cleaned(simplify=True)
- assert simplified.vertices.size == 36
- def test_start_with_moveto():
- # Should be entirely clipped away to a single MOVETO
- data = b"""
- ZwAAAAku+v9UAQAA+Tj6/z8CAADpQ/r/KAMAANlO+v8QBAAAyVn6//UEAAC6ZPr/2gUAAKpv+v+8
- BgAAm3r6/50HAACLhfr/ewgAAHyQ+v9ZCQAAbZv6/zQKAABepvr/DgsAAE+x+v/lCwAAQLz6/7wM
- AAAxx/r/kA0AACPS+v9jDgAAFN36/zQPAAAF6Pr/AxAAAPfy+v/QEAAA6f36/5wRAADbCPv/ZhIA
- AMwT+/8uEwAAvh77//UTAACwKfv/uRQAAKM0+/98FQAAlT/7/z0WAACHSvv//RYAAHlV+/+7FwAA
- bGD7/3cYAABea/v/MRkAAFF2+//pGQAARIH7/6AaAAA3jPv/VRsAACmX+/8JHAAAHKL7/7ocAAAP
- rfv/ah0AAAO4+/8YHgAA9sL7/8QeAADpzfv/bx8AANzY+/8YIAAA0OP7/78gAADD7vv/ZCEAALf5
- +/8IIgAAqwT8/6kiAACeD/z/SiMAAJIa/P/oIwAAhiX8/4QkAAB6MPz/HyUAAG47/P+4JQAAYkb8
- /1AmAABWUfz/5SYAAEpc/P95JwAAPmf8/wsoAAAzcvz/nCgAACd9/P8qKQAAHIj8/7cpAAAQk/z/
- QyoAAAWe/P/MKgAA+aj8/1QrAADus/z/2isAAOO+/P9eLAAA2Mn8/+AsAADM1Pz/YS0AAMHf/P/g
- LQAAtur8/10uAACr9fz/2C4AAKEA/f9SLwAAlgv9/8ovAACLFv3/QDAAAIAh/f+1MAAAdSz9/ycx
- AABrN/3/mDEAAGBC/f8IMgAAVk39/3UyAABLWP3/4TIAAEFj/f9LMwAANm79/7MzAAAsef3/GjQA
- ACKE/f9+NAAAF4/9/+E0AAANmv3/QzUAAAOl/f+iNQAA+a/9/wA2AADvuv3/XDYAAOXF/f+2NgAA
- 29D9/w83AADR2/3/ZjcAAMfm/f+7NwAAvfH9/w44AACz/P3/XzgAAKkH/v+vOAAAnxL+//04AACW
- Hf7/SjkAAIwo/v+UOQAAgjP+/905AAB5Pv7/JDoAAG9J/v9pOgAAZVT+/606AABcX/7/7zoAAFJq
- /v8vOwAASXX+/207AAA/gP7/qjsAADaL/v/lOwAALZb+/x48AAAjof7/VTwAABqs/v+LPAAAELf+
- /788AAAHwv7/8TwAAP7M/v8hPQAA9df+/1A9AADr4v7/fT0AAOLt/v+oPQAA2fj+/9E9AADQA///
- +T0AAMYO//8fPgAAvRn//0M+AAC0JP//ZT4AAKsv//+GPgAAojr//6U+AACZRf//wj4AAJBQ///d
- PgAAh1v///c+AAB+Zv//Dz8AAHRx//8lPwAAa3z//zk/AABih///TD8AAFmS//9dPwAAUJ3//2w/
- AABHqP//ej8AAD6z//+FPwAANb7//48/AAAsyf//lz8AACPU//+ePwAAGt///6M/AAAR6v//pj8A
- AAj1//+nPwAA/////w=="""
- verts = np.frombuffer(base64.decodebytes(data), dtype='<i4')
- verts = verts.reshape((len(verts) // 2, 2))
- path = Path(verts)
- segs = path.iter_segments(transforms.IdentityTransform(),
- clip=(0.0, 0.0, 100.0, 100.0))
- segs = list(segs)
- assert len(segs) == 1
- assert segs[0][1] == Path.MOVETO
- def test_throw_rendering_complexity_exceeded():
- plt.rcParams['path.simplify'] = False
- xx = np.arange(200000)
- yy = np.random.rand(200000)
- yy[1000] = np.nan
- fig, ax = plt.subplots()
- ax.plot(xx, yy)
- with pytest.raises(OverflowError):
- fig.savefig(io.BytesIO())
- @image_comparison(['clipper_edge'], remove_text=True)
- def test_clipper():
- dat = (0, 1, 0, 2, 0, 3, 0, 4, 0, 5)
- fig = plt.figure(figsize=(2, 1))
- fig.subplots_adjust(left=0, bottom=0, wspace=0, hspace=0)
- ax = fig.add_axes((0, 0, 1.0, 1.0), ylim=(0, 5), autoscale_on=False)
- ax.plot(dat)
- ax.xaxis.set_major_locator(plt.MultipleLocator(1))
- ax.yaxis.set_major_locator(plt.MultipleLocator(1))
- ax.xaxis.set_ticks_position('bottom')
- ax.yaxis.set_ticks_position('left')
- ax.set_xlim(5, 9)
- @image_comparison(['para_equal_perp'], remove_text=True)
- def test_para_equal_perp():
- x = np.array([0, 1, 2, 1, 0, -1, 0, 1] + [1] * 128)
- y = np.array([1, 1, 2, 1, 0, -1, 0, 0] + [0] * 128)
- fig, ax = plt.subplots()
- ax.plot(x + 1, y + 1)
- ax.plot(x + 1, y + 1, 'ro')
- @image_comparison(['clipping_with_nans'])
- def test_clipping_with_nans():
- x = np.linspace(0, 3.14 * 2, 3000)
- y = np.sin(x)
- x[::100] = np.nan
- fig, ax = plt.subplots()
- ax.plot(x, y)
- ax.set_ylim(-0.25, 0.25)
- def test_clipping_full():
- p = Path([[1e30, 1e30]] * 5)
- simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
- assert simplified == []
- p = Path([[50, 40], [75, 65]], [1, 2])
- simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
- assert ([(list(x), y) for x, y in simplified] ==
- [([50, 40], 1), ([75, 65], 2)])
- p = Path([[50, 40]], [1])
- simplified = list(p.iter_segments(clip=[0, 0, 100, 100]))
- assert ([(list(x), y) for x, y in simplified] ==
- [([50, 40], 1)])
|