12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613 |
- """
- Interpolation inside triangular grids.
- """
- import numpy as np
- from matplotlib import cbook
- from matplotlib.tri import Triangulation
- from matplotlib.tri.trifinder import TriFinder
- from matplotlib.tri.tritools import TriAnalyzer
- __all__ = ('TriInterpolator', 'LinearTriInterpolator', 'CubicTriInterpolator')
- class TriInterpolator:
- """
- Abstract base class for classes used to perform interpolation on
- triangular grids.
- Derived classes implement the following methods:
- - ``__call__(x, y)`` ,
- where x, y are array-like point coordinates of the same shape, and
- that returns a masked array of the same shape containing the
- interpolated z-values.
- - ``gradient(x, y)`` ,
- where x, y are array-like point coordinates of the same
- shape, and that returns a list of 2 masked arrays of the same shape
- containing the 2 derivatives of the interpolator (derivatives of
- interpolated z values with respect to x and y).
- """
- def __init__(self, triangulation, z, trifinder=None):
- cbook._check_isinstance(Triangulation, triangulation=triangulation)
- self._triangulation = triangulation
- self._z = np.asarray(z)
- if self._z.shape != self._triangulation.x.shape:
- raise ValueError("z array must have same length as triangulation x"
- " and y arrays")
- cbook._check_isinstance((TriFinder, None), trifinder=trifinder)
- self._trifinder = trifinder or self._triangulation.get_trifinder()
- # Default scaling factors : 1.0 (= no scaling)
- # Scaling may be used for interpolations for which the order of
- # magnitude of x, y has an impact on the interpolant definition.
- # Please refer to :meth:`_interpolate_multikeys` for details.
- self._unit_x = 1.0
- self._unit_y = 1.0
- # Default triangle renumbering: None (= no renumbering)
- # Renumbering may be used to avoid unnecessary computations
- # if complex calculations are done inside the Interpolator.
- # Please refer to :meth:`_interpolate_multikeys` for details.
- self._tri_renum = None
- # __call__ and gradient docstrings are shared by all subclasses
- # (except, if needed, relevant additions).
- # However these methods are only implemented in subclasses to avoid
- # confusion in the documentation.
- _docstring__call__ = """
- Returns a masked array containing interpolated values at the specified
- (x, y) points.
- Parameters
- ----------
- x, y : array-like
- x and y coordinates of the same shape and any number of
- dimensions.
- Returns
- -------
- z : np.ma.array
- Masked array of the same shape as *x* and *y*; values corresponding
- to (*x*, *y*) points outside of the triangulation are masked out.
- """
- _docstringgradient = r"""
- Returns a list of 2 masked arrays containing interpolated derivatives
- at the specified (x, y) points.
- Parameters
- ----------
- x, y : array-like
- x and y coordinates of the same shape and any number of
- dimensions.
- Returns
- -------
- dzdx, dzdy : np.ma.array
- 2 masked arrays of the same shape as *x* and *y*; values
- corresponding to (x, y) points outside of the triangulation
- are masked out.
- The first returned array contains the values of
- :math:`\frac{\partial z}{\partial x}` and the second those of
- :math:`\frac{\partial z}{\partial y}`.
- """
- def _interpolate_multikeys(self, x, y, tri_index=None,
- return_keys=('z',)):
- """
- Versatile (private) method defined for all TriInterpolators.
- :meth:`_interpolate_multikeys` is a wrapper around method
- :meth:`_interpolate_single_key` (to be defined in the child
- subclasses).
- :meth:`_interpolate_single_key actually performs the interpolation,
- but only for 1-dimensional inputs and at valid locations (inside
- unmasked triangles of the triangulation).
- The purpose of :meth:`_interpolate_multikeys` is to implement the
- following common tasks needed in all subclasses implementations:
- - calculation of containing triangles
- - dealing with more than one interpolation request at the same
- location (e.g., if the 2 derivatives are requested, it is
- unnecessary to compute the containing triangles twice)
- - scaling according to self._unit_x, self._unit_y
- - dealing with points outside of the grid (with fill value np.nan)
- - dealing with multi-dimensional *x*, *y* arrays: flattening for
- :meth:`_interpolate_params` call and final reshaping.
- (Note that np.vectorize could do most of those things very well for
- you, but it does it by function evaluations over successive tuples of
- the input arrays. Therefore, this tends to be more time consuming than
- using optimized numpy functions - e.g., np.dot - which can be used
- easily on the flattened inputs, in the child-subclass methods
- :meth:`_interpolate_single_key`.)
- It is guaranteed that the calls to :meth:`_interpolate_single_key`
- will be done with flattened (1-d) array-like input parameters *x*, *y*
- and with flattened, valid `tri_index` arrays (no -1 index allowed).
- Parameters
- ----------
- x, y : array-like
- x and y coordinates indicating where interpolated values are
- requested.
- tri_index : array-like of int, optional
- Array of the containing triangle indices, same shape as
- *x* and *y*. Defaults to None. If None, these indices
- will be computed by a TriFinder instance.
- (Note: For point outside the grid, tri_index[ipt] shall be -1).
- return_keys : tuple of keys from {'z', 'dzdx', 'dzdy'}
- Defines the interpolation arrays to return, and in which order.
- Returns
- -------
- ret : list of arrays
- Each array-like contains the expected interpolated values in the
- order defined by *return_keys* parameter.
- """
- # Flattening and rescaling inputs arrays x, y
- # (initial shape is stored for output)
- x = np.asarray(x, dtype=np.float64)
- y = np.asarray(y, dtype=np.float64)
- sh_ret = x.shape
- if x.shape != y.shape:
- raise ValueError("x and y shall have same shapes."
- " Given: {0} and {1}".format(x.shape, y.shape))
- x = np.ravel(x)
- y = np.ravel(y)
- x_scaled = x/self._unit_x
- y_scaled = y/self._unit_y
- size_ret = np.size(x_scaled)
- # Computes & ravels the element indexes, extract the valid ones.
- if tri_index is None:
- tri_index = self._trifinder(x, y)
- else:
- if tri_index.shape != sh_ret:
- raise ValueError(
- "tri_index array is provided and shall"
- " have same shape as x and y. Given: "
- "{0} and {1}".format(tri_index.shape, sh_ret))
- tri_index = np.ravel(tri_index)
- mask_in = (tri_index != -1)
- if self._tri_renum is None:
- valid_tri_index = tri_index[mask_in]
- else:
- valid_tri_index = self._tri_renum[tri_index[mask_in]]
- valid_x = x_scaled[mask_in]
- valid_y = y_scaled[mask_in]
- ret = []
- for return_key in return_keys:
- # Find the return index associated with the key.
- try:
- return_index = {'z': 0, 'dzdx': 1, 'dzdy': 2}[return_key]
- except KeyError:
- raise ValueError("return_keys items shall take values in"
- " {'z', 'dzdx', 'dzdy'}")
- # Sets the scale factor for f & df components
- scale = [1., 1./self._unit_x, 1./self._unit_y][return_index]
- # Computes the interpolation
- ret_loc = np.empty(size_ret, dtype=np.float64)
- ret_loc[~mask_in] = np.nan
- ret_loc[mask_in] = self._interpolate_single_key(
- return_key, valid_tri_index, valid_x, valid_y) * scale
- ret += [np.ma.masked_invalid(ret_loc.reshape(sh_ret), copy=False)]
- return ret
- def _interpolate_single_key(self, return_key, tri_index, x, y):
- """
- Performs the interpolation at points belonging to the triangulation
- (inside an unmasked triangles).
- Parameters
- ----------
- return_index : {'z', 'dzdx', 'dzdy'}
- Identifies the requested values (z or its derivatives)
- tri_index : 1d integer array
- Valid triangle index (-1 prohibited)
- x, y : 1d arrays, same shape as `tri_index`
- Valid locations where interpolation is requested.
- Returns
- -------
- ret : 1-d array
- Returned array of the same size as *tri_index*
- """
- raise NotImplementedError("TriInterpolator subclasses" +
- "should implement _interpolate_single_key!")
- class LinearTriInterpolator(TriInterpolator):
- """
- A LinearTriInterpolator performs linear interpolation on a triangular grid.
- Each triangle is represented by a plane so that an interpolated value at
- point (x, y) lies on the plane of the triangle containing (x, y).
- Interpolated values are therefore continuous across the triangulation, but
- their first derivatives are discontinuous at edges between triangles.
- Parameters
- ----------
- triangulation : :class:`~matplotlib.tri.Triangulation` object
- The triangulation to interpolate over.
- z : array-like of shape (npoints,)
- Array of values, defined at grid points, to interpolate between.
- trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
- If this is not specified, the Triangulation's default TriFinder will
- be used by calling
- :func:`matplotlib.tri.Triangulation.get_trifinder`.
- Methods
- -------
- `__call__` (x, y) : Returns interpolated values at (x, y) points.
- `gradient` (x, y) : Returns interpolated derivatives at (x, y) points.
- """
- def __init__(self, triangulation, z, trifinder=None):
- TriInterpolator.__init__(self, triangulation, z, trifinder)
- # Store plane coefficients for fast interpolation calculations.
- self._plane_coefficients = \
- self._triangulation.calculate_plane_coefficients(self._z)
- def __call__(self, x, y):
- return self._interpolate_multikeys(x, y, tri_index=None,
- return_keys=('z',))[0]
- __call__.__doc__ = TriInterpolator._docstring__call__
- def gradient(self, x, y):
- return self._interpolate_multikeys(x, y, tri_index=None,
- return_keys=('dzdx', 'dzdy'))
- gradient.__doc__ = TriInterpolator._docstringgradient
- def _interpolate_single_key(self, return_key, tri_index, x, y):
- if return_key == 'z':
- return (self._plane_coefficients[tri_index, 0]*x +
- self._plane_coefficients[tri_index, 1]*y +
- self._plane_coefficients[tri_index, 2])
- elif return_key == 'dzdx':
- return self._plane_coefficients[tri_index, 0]
- elif return_key == 'dzdy':
- return self._plane_coefficients[tri_index, 1]
- else:
- raise ValueError("Invalid return_key: " + return_key)
- class CubicTriInterpolator(TriInterpolator):
- r"""
- A CubicTriInterpolator performs cubic interpolation on triangular grids.
- In one-dimension - on a segment - a cubic interpolating function is
- defined by the values of the function and its derivative at both ends.
- This is almost the same in 2-d inside a triangle, except that the values
- of the function and its 2 derivatives have to be defined at each triangle
- node.
- The CubicTriInterpolator takes the value of the function at each node -
- provided by the user - and internally computes the value of the
- derivatives, resulting in a smooth interpolation.
- (As a special feature, the user can also impose the value of the
- derivatives at each node, but this is not supposed to be the common
- usage.)
- Parameters
- ----------
- triangulation : :class:`~matplotlib.tri.Triangulation` object
- The triangulation to interpolate over.
- z : array-like of shape (npoints,)
- Array of values, defined at grid points, to interpolate between.
- kind : {'min_E', 'geom', 'user'}, optional
- Choice of the smoothing algorithm, in order to compute
- the interpolant derivatives (defaults to 'min_E'):
- - if 'min_E': (default) The derivatives at each node is computed
- to minimize a bending energy.
- - if 'geom': The derivatives at each node is computed as a
- weighted average of relevant triangle normals. To be used for
- speed optimization (large grids).
- - if 'user': The user provides the argument *dz*, no computation
- is hence needed.
- trifinder : :class:`~matplotlib.tri.TriFinder` object, optional
- If not specified, the Triangulation's default TriFinder will
- be used by calling
- :func:`matplotlib.tri.Triangulation.get_trifinder`.
- dz : tuple of array-likes (dzdx, dzdy), optional
- Used only if *kind* ='user'. In this case *dz* must be provided as
- (dzdx, dzdy) where dzdx, dzdy are arrays of the same shape as *z* and
- are the interpolant first derivatives at the *triangulation* points.
- Methods
- -------
- `__call__` (x, y) : Returns interpolated values at (x, y) points.
- `gradient` (x, y) : Returns interpolated derivatives at (x, y) points.
- Notes
- -----
- This note is a bit technical and details the way a
- :class:`~matplotlib.tri.CubicTriInterpolator` computes a cubic
- interpolation.
- The interpolation is based on a Clough-Tocher subdivision scheme of
- the *triangulation* mesh (to make it clearer, each triangle of the
- grid will be divided in 3 child-triangles, and on each child triangle
- the interpolated function is a cubic polynomial of the 2 coordinates).
- This technique originates from FEM (Finite Element Method) analysis;
- the element used is a reduced Hsieh-Clough-Tocher (HCT)
- element. Its shape functions are described in [1]_.
- The assembled function is guaranteed to be C1-smooth, i.e. it is
- continuous and its first derivatives are also continuous (this
- is easy to show inside the triangles but is also true when crossing the
- edges).
- In the default case (*kind* ='min_E'), the interpolant minimizes a
- curvature energy on the functional space generated by the HCT element
- shape functions - with imposed values but arbitrary derivatives at each
- node. The minimized functional is the integral of the so-called total
- curvature (implementation based on an algorithm from [2]_ - PCG sparse
- solver):
- .. math::
- E(z) = \frac{1}{2} \int_{\Omega} \left(
- \left( \frac{\partial^2{z}}{\partial{x}^2} \right)^2 +
- \left( \frac{\partial^2{z}}{\partial{y}^2} \right)^2 +
- 2\left( \frac{\partial^2{z}}{\partial{y}\partial{x}} \right)^2
- \right) dx\,dy
- If the case *kind* ='geom' is chosen by the user, a simple geometric
- approximation is used (weighted average of the triangle normal
- vectors), which could improve speed on very large grids.
- References
- ----------
- .. [1] Michel Bernadou, Kamal Hassan, "Basis functions for general
- Hsieh-Clough-Tocher triangles, complete or reduced.",
- International Journal for Numerical Methods in Engineering,
- 17(5):784 - 789. 2.01.
- .. [2] C.T. Kelley, "Iterative Methods for Optimization".
- """
- def __init__(self, triangulation, z, kind='min_E', trifinder=None,
- dz=None):
- TriInterpolator.__init__(self, triangulation, z, trifinder)
- # Loads the underlying c++ _triangulation.
- # (During loading, reordering of triangulation._triangles may occur so
- # that all final triangles are now anti-clockwise)
- self._triangulation.get_cpp_triangulation()
- # To build the stiffness matrix and avoid zero-energy spurious modes
- # we will only store internally the valid (unmasked) triangles and
- # the necessary (used) points coordinates.
- # 2 renumbering tables need to be computed and stored:
- # - a triangle renum table in order to translate the result from a
- # TriFinder instance into the internal stored triangle number.
- # - a node renum table to overwrite the self._z values into the new
- # (used) node numbering.
- tri_analyzer = TriAnalyzer(self._triangulation)
- (compressed_triangles, compressed_x, compressed_y, tri_renum,
- node_renum) = tri_analyzer._get_compressed_triangulation(True, True)
- self._triangles = compressed_triangles
- self._tri_renum = tri_renum
- # Taking into account the node renumbering in self._z:
- node_mask = (node_renum == -1)
- self._z[node_renum[~node_mask]] = self._z
- self._z = self._z[~node_mask]
- # Computing scale factors
- self._unit_x = np.ptp(compressed_x)
- self._unit_y = np.ptp(compressed_y)
- self._pts = np.column_stack([compressed_x / self._unit_x,
- compressed_y / self._unit_y])
- # Computing triangle points
- self._tris_pts = self._pts[self._triangles]
- # Computing eccentricities
- self._eccs = self._compute_tri_eccentricities(self._tris_pts)
- # Computing dof estimations for HCT triangle shape function
- self._dof = self._compute_dof(kind, dz=dz)
- # Loading HCT element
- self._ReferenceElement = _ReducedHCT_Element()
- def __call__(self, x, y):
- return self._interpolate_multikeys(x, y, tri_index=None,
- return_keys=('z',))[0]
- __call__.__doc__ = TriInterpolator._docstring__call__
- def gradient(self, x, y):
- return self._interpolate_multikeys(x, y, tri_index=None,
- return_keys=('dzdx', 'dzdy'))
- gradient.__doc__ = TriInterpolator._docstringgradient
- def _interpolate_single_key(self, return_key, tri_index, x, y):
- tris_pts = self._tris_pts[tri_index]
- alpha = self._get_alpha_vec(x, y, tris_pts)
- ecc = self._eccs[tri_index]
- dof = np.expand_dims(self._dof[tri_index], axis=1)
- if return_key == 'z':
- return self._ReferenceElement.get_function_values(
- alpha, ecc, dof)
- elif return_key in ['dzdx', 'dzdy']:
- J = self._get_jacobian(tris_pts)
- dzdx = self._ReferenceElement.get_function_derivatives(
- alpha, J, ecc, dof)
- if return_key == 'dzdx':
- return dzdx[:, 0, 0]
- else:
- return dzdx[:, 1, 0]
- else:
- raise ValueError("Invalid return_key: " + return_key)
- def _compute_dof(self, kind, dz=None):
- """
- Computes and returns nodal dofs according to kind
- Parameters
- ----------
- kind : {'min_E', 'geom', 'user'}
- Choice of the _DOF_estimator subclass to perform the gradient
- estimation.
- dz : tuple of array-likes (dzdx, dzdy), optional
- Used only if *kind*=user; in this case passed to the
- :class:`_DOF_estimator_user`.
- Returns
- -------
- dof : array-like, shape (npts, 2)
- Estimation of the gradient at triangulation nodes (stored as
- degree of freedoms of reduced-HCT triangle elements).
- """
- if kind == 'user':
- if dz is None:
- raise ValueError("For a CubicTriInterpolator with "
- "*kind*='user', a valid *dz* "
- "argument is expected.")
- TE = _DOF_estimator_user(self, dz=dz)
- elif kind == 'geom':
- TE = _DOF_estimator_geom(self)
- elif kind == 'min_E':
- TE = _DOF_estimator_min_E(self)
- else:
- raise ValueError("CubicTriInterpolator *kind* proposed: {0}; "
- "should be one of: "
- "'user', 'geom', 'min_E'".format(kind))
- return TE.compute_dof_from_df()
- @staticmethod
- def _get_alpha_vec(x, y, tris_pts):
- """
- Fast (vectorized) function to compute barycentric coordinates alpha.
- Parameters
- ----------
- x, y : array-like of dim 1 (shape (nx,))
- Coordinates of the points whose points barycentric
- coordinates are requested
- tris_pts : array like of dim 3 (shape: (nx, 3, 2))
- Coordinates of the containing triangles apexes.
- Returns
- -------
- alpha : array of dim 2 (shape (nx, 3))
- Barycentric coordinates of the points inside the containing
- triangles.
- """
- ndim = tris_pts.ndim-2
- a = tris_pts[:, 1, :] - tris_pts[:, 0, :]
- b = tris_pts[:, 2, :] - tris_pts[:, 0, :]
- abT = np.stack([a, b], axis=-1)
- ab = _transpose_vectorized(abT)
- OM = np.stack([x, y], axis=1) - tris_pts[:, 0, :]
- metric = _prod_vectorized(ab, abT)
- # Here we try to deal with the colinear cases.
- # metric_inv is in this case set to the Moore-Penrose pseudo-inverse
- # meaning that we will still return a set of valid barycentric
- # coordinates.
- metric_inv = _pseudo_inv22sym_vectorized(metric)
- Covar = _prod_vectorized(ab, _transpose_vectorized(
- np.expand_dims(OM, ndim)))
- ksi = _prod_vectorized(metric_inv, Covar)
- alpha = _to_matrix_vectorized([
- [1-ksi[:, 0, 0]-ksi[:, 1, 0]], [ksi[:, 0, 0]], [ksi[:, 1, 0]]])
- return alpha
- @staticmethod
- def _get_jacobian(tris_pts):
- """
- Fast (vectorized) function to compute triangle jacobian matrix.
- Parameters
- ----------
- tris_pts : array like of dim 3 (shape: (nx, 3, 2))
- Coordinates of the containing triangles apexes.
- Returns
- -------
- J : array of dim 3 (shape (nx, 2, 2))
- Barycentric coordinates of the points inside the containing
- triangles.
- J[itri,:,:] is the jacobian matrix at apex 0 of the triangle
- itri, so that the following (matrix) relationship holds:
- [dz/dksi] = [J] x [dz/dx]
- with x: global coordinates
- ksi: element parametric coordinates in triangle first apex
- local basis.
- """
- a = np.array(tris_pts[:, 1, :] - tris_pts[:, 0, :])
- b = np.array(tris_pts[:, 2, :] - tris_pts[:, 0, :])
- J = _to_matrix_vectorized([[a[:, 0], a[:, 1]],
- [b[:, 0], b[:, 1]]])
- return J
- @staticmethod
- def _compute_tri_eccentricities(tris_pts):
- """
- Computes triangle eccentricities
- Parameters
- ----------
- tris_pts : array like of dim 3 (shape: (nx, 3, 2))
- Coordinates of the triangles apexes.
- Returns
- -------
- ecc : array like of dim 2 (shape: (nx, 3))
- The so-called eccentricity parameters [1] needed for
- HCT triangular element.
- """
- a = np.expand_dims(tris_pts[:, 2, :] - tris_pts[:, 1, :], axis=2)
- b = np.expand_dims(tris_pts[:, 0, :] - tris_pts[:, 2, :], axis=2)
- c = np.expand_dims(tris_pts[:, 1, :] - tris_pts[:, 0, :], axis=2)
- # Do not use np.squeeze, this is dangerous if only one triangle
- # in the triangulation...
- dot_a = _prod_vectorized(_transpose_vectorized(a), a)[:, 0, 0]
- dot_b = _prod_vectorized(_transpose_vectorized(b), b)[:, 0, 0]
- dot_c = _prod_vectorized(_transpose_vectorized(c), c)[:, 0, 0]
- # Note that this line will raise a warning for dot_a, dot_b or dot_c
- # zeros, but we choose not to support triangles with duplicate points.
- return _to_matrix_vectorized([[(dot_c-dot_b) / dot_a],
- [(dot_a-dot_c) / dot_b],
- [(dot_b-dot_a) / dot_c]])
- # FEM element used for interpolation and for solving minimisation
- # problem (Reduced HCT element)
- class _ReducedHCT_Element:
- """
- Implementation of reduced HCT triangular element with explicit shape
- functions.
- Computes z, dz, d2z and the element stiffness matrix for bending energy:
- E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA)
- *** Reference for the shape functions: ***
- [1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or
- reduced.
- Michel Bernadou, Kamal Hassan
- International Journal for Numerical Methods in Engineering.
- 17(5):784 - 789. 2.01
- *** Element description: ***
- 9 dofs: z and dz given at 3 apex
- C1 (conform)
- """
- # 1) Loads matrices to generate shape functions as a function of
- # triangle eccentricities - based on [1] p.11 '''
- M = np.array([
- [ 0.00, 0.00, 0.00, 4.50, 4.50, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-0.25, 0.00, 0.00, 0.50, 1.25, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-0.25, 0.00, 0.00, 1.25, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.50, 1.00, 0.00, -1.50, 0.00, 3.00, 3.00, 0.00, 0.00, 3.00],
- [ 0.00, 0.00, 0.00, -0.25, 0.25, 0.00, 1.00, 0.00, 0.00, 0.50],
- [ 0.25, 0.00, 0.00, -0.50, -0.25, 1.00, 0.00, 0.00, 0.00, 1.00],
- [ 0.50, 0.00, 1.00, 0.00, -1.50, 0.00, 0.00, 3.00, 3.00, 3.00],
- [ 0.25, 0.00, 0.00, -0.25, -0.50, 0.00, 0.00, 0.00, 1.00, 1.00],
- [ 0.00, 0.00, 0.00, 0.25, -0.25, 0.00, 0.00, 1.00, 0.00, 0.50]])
- M0 = np.array([
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-1.00, 0.00, 0.00, 1.50, 1.50, 0.00, 0.00, 0.00, 0.00, -3.00],
- [-0.50, 0.00, 0.00, 0.75, 0.75, 0.00, 0.00, 0.00, 0.00, -1.50],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 1.00, 0.00, 0.00, -1.50, -1.50, 0.00, 0.00, 0.00, 0.00, 3.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.50, 0.00, 0.00, -0.75, -0.75, 0.00, 0.00, 0.00, 0.00, 1.50]])
- M1 = np.array([
- [-0.50, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-0.25, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.50, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.25, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])
- M2 = np.array([
- [ 0.50, 0.00, 0.00, 0.00, -1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.25, 0.00, 0.00, 0.00, -0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-0.50, 0.00, 0.00, 0.00, 1.50, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [-0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
- [ 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]])
- # 2) Loads matrices to rotate components of gradient & Hessian
- # vectors in the reference basis of triangle first apex (a0)
- rotate_dV = np.array([[ 1., 0.], [ 0., 1.],
- [ 0., 1.], [-1., -1.],
- [-1., -1.], [ 1., 0.]])
- rotate_d2V = np.array([[1., 0., 0.], [0., 1., 0.], [ 0., 0., 1.],
- [0., 1., 0.], [1., 1., 1.], [ 0., -2., -1.],
- [1., 1., 1.], [1., 0., 0.], [-2., 0., -1.]])
- # 3) Loads Gauss points & weights on the 3 sub-_triangles for P2
- # exact integral - 3 points on each subtriangles.
- # NOTE: as the 2nd derivative is discontinuous , we really need those 9
- # points!
- n_gauss = 9
- gauss_pts = np.array([[13./18., 4./18., 1./18.],
- [ 4./18., 13./18., 1./18.],
- [ 7./18., 7./18., 4./18.],
- [ 1./18., 13./18., 4./18.],
- [ 1./18., 4./18., 13./18.],
- [ 4./18., 7./18., 7./18.],
- [ 4./18., 1./18., 13./18.],
- [13./18., 1./18., 4./18.],
- [ 7./18., 4./18., 7./18.]], dtype=np.float64)
- gauss_w = np.ones([9], dtype=np.float64) / 9.
- # 4) Stiffness matrix for curvature energy
- E = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 2.]])
- # 5) Loads the matrix to compute DOF_rot from tri_J at apex 0
- J0_to_J1 = np.array([[-1., 1.], [-1., 0.]])
- J0_to_J2 = np.array([[ 0., -1.], [ 1., -1.]])
- def get_function_values(self, alpha, ecc, dofs):
- """
- Parameters
- ----------
- alpha : is a (N x 3 x 1) array (array of column-matrices) of
- barycentric coordinates,
- ecc : is a (N x 3 x 1) array (array of column-matrices) of triangle
- eccentricities,
- dofs : is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
- degrees of freedom.
- Returns
- -------
- Returns the N-array of interpolated function values.
- """
- subtri = np.argmin(alpha, axis=1)[:, 0]
- ksi = _roll_vectorized(alpha, -subtri, axis=0)
- E = _roll_vectorized(ecc, -subtri, axis=0)
- x = ksi[:, 0, 0]
- y = ksi[:, 1, 0]
- z = ksi[:, 2, 0]
- x_sq = x*x
- y_sq = y*y
- z_sq = z*z
- V = _to_matrix_vectorized([
- [x_sq*x], [y_sq*y], [z_sq*z], [x_sq*z], [x_sq*y], [y_sq*x],
- [y_sq*z], [z_sq*y], [z_sq*x], [x*y*z]])
- prod = _prod_vectorized(self.M, V)
- prod += _scalar_vectorized(E[:, 0, 0],
- _prod_vectorized(self.M0, V))
- prod += _scalar_vectorized(E[:, 1, 0],
- _prod_vectorized(self.M1, V))
- prod += _scalar_vectorized(E[:, 2, 0],
- _prod_vectorized(self.M2, V))
- s = _roll_vectorized(prod, 3*subtri, axis=0)
- return _prod_vectorized(dofs, s)[:, 0, 0]
- def get_function_derivatives(self, alpha, J, ecc, dofs):
- """
- Parameters
- ----------
- *alpha* is a (N x 3 x 1) array (array of column-matrices of
- barycentric coordinates)
- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
- triangle first apex)
- *ecc* is a (N x 3 x 1) array (array of column-matrices of triangle
- eccentricities)
- *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
- degrees of freedom.
- Returns
- -------
- Returns the values of interpolated function derivatives [dz/dx, dz/dy]
- in global coordinates at locations alpha, as a column-matrices of
- shape (N x 2 x 1).
- """
- subtri = np.argmin(alpha, axis=1)[:, 0]
- ksi = _roll_vectorized(alpha, -subtri, axis=0)
- E = _roll_vectorized(ecc, -subtri, axis=0)
- x = ksi[:, 0, 0]
- y = ksi[:, 1, 0]
- z = ksi[:, 2, 0]
- x_sq = x*x
- y_sq = y*y
- z_sq = z*z
- dV = _to_matrix_vectorized([
- [ -3.*x_sq, -3.*x_sq],
- [ 3.*y_sq, 0.],
- [ 0., 3.*z_sq],
- [ -2.*x*z, -2.*x*z+x_sq],
- [-2.*x*y+x_sq, -2.*x*y],
- [ 2.*x*y-y_sq, -y_sq],
- [ 2.*y*z, y_sq],
- [ z_sq, 2.*y*z],
- [ -z_sq, 2.*x*z-z_sq],
- [ x*z-y*z, x*y-y*z]])
- # Puts back dV in first apex basis
- dV = _prod_vectorized(dV, _extract_submatrices(
- self.rotate_dV, subtri, block_size=2, axis=0))
- prod = _prod_vectorized(self.M, dV)
- prod += _scalar_vectorized(E[:, 0, 0],
- _prod_vectorized(self.M0, dV))
- prod += _scalar_vectorized(E[:, 1, 0],
- _prod_vectorized(self.M1, dV))
- prod += _scalar_vectorized(E[:, 2, 0],
- _prod_vectorized(self.M2, dV))
- dsdksi = _roll_vectorized(prod, 3*subtri, axis=0)
- dfdksi = _prod_vectorized(dofs, dsdksi)
- # In global coordinates:
- # Here we try to deal with the simplest colinear cases, returning a
- # null matrix.
- J_inv = _safe_inv22_vectorized(J)
- dfdx = _prod_vectorized(J_inv, _transpose_vectorized(dfdksi))
- return dfdx
- def get_function_hessians(self, alpha, J, ecc, dofs):
- """
- Parameters
- ----------
- *alpha* is a (N x 3 x 1) array (array of column-matrices) of
- barycentric coordinates
- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
- triangle first apex)
- *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
- eccentricities
- *dofs* is a (N x 1 x 9) arrays (arrays of row-matrices) of computed
- degrees of freedom.
- Returns
- -------
- Returns the values of interpolated function 2nd-derivatives
- [d2z/dx2, d2z/dy2, d2z/dxdy] in global coordinates at locations alpha,
- as a column-matrices of shape (N x 3 x 1).
- """
- d2sdksi2 = self.get_d2Sidksij2(alpha, ecc)
- d2fdksi2 = _prod_vectorized(dofs, d2sdksi2)
- H_rot = self.get_Hrot_from_J(J)
- d2fdx2 = _prod_vectorized(d2fdksi2, H_rot)
- return _transpose_vectorized(d2fdx2)
- def get_d2Sidksij2(self, alpha, ecc):
- """
- Parameters
- ----------
- *alpha* is a (N x 3 x 1) array (array of column-matrices) of
- barycentric coordinates
- *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
- eccentricities
- Returns
- -------
- Returns the arrays d2sdksi2 (N x 3 x 1) Hessian of shape functions
- expressed in covariant coordinates in first apex basis.
- """
- subtri = np.argmin(alpha, axis=1)[:, 0]
- ksi = _roll_vectorized(alpha, -subtri, axis=0)
- E = _roll_vectorized(ecc, -subtri, axis=0)
- x = ksi[:, 0, 0]
- y = ksi[:, 1, 0]
- z = ksi[:, 2, 0]
- d2V = _to_matrix_vectorized([
- [ 6.*x, 6.*x, 6.*x],
- [ 6.*y, 0., 0.],
- [ 0., 6.*z, 0.],
- [ 2.*z, 2.*z-4.*x, 2.*z-2.*x],
- [2.*y-4.*x, 2.*y, 2.*y-2.*x],
- [2.*x-4.*y, 0., -2.*y],
- [ 2.*z, 0., 2.*y],
- [ 0., 2.*y, 2.*z],
- [ 0., 2.*x-4.*z, -2.*z],
- [ -2.*z, -2.*y, x-y-z]])
- # Puts back d2V in first apex basis
- d2V = _prod_vectorized(d2V, _extract_submatrices(
- self.rotate_d2V, subtri, block_size=3, axis=0))
- prod = _prod_vectorized(self.M, d2V)
- prod += _scalar_vectorized(E[:, 0, 0],
- _prod_vectorized(self.M0, d2V))
- prod += _scalar_vectorized(E[:, 1, 0],
- _prod_vectorized(self.M1, d2V))
- prod += _scalar_vectorized(E[:, 2, 0],
- _prod_vectorized(self.M2, d2V))
- d2sdksi2 = _roll_vectorized(prod, 3*subtri, axis=0)
- return d2sdksi2
- def get_bending_matrices(self, J, ecc):
- """
- Parameters
- ----------
- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
- triangle first apex)
- *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
- eccentricities
- Returns
- -------
- Returns the element K matrices for bending energy expressed in
- GLOBAL nodal coordinates.
- K_ij = integral [ (d2zi/dx2 + d2zi/dy2) * (d2zj/dx2 + d2zj/dy2) dA]
- tri_J is needed to rotate dofs from local basis to global basis
- """
- n = np.size(ecc, 0)
- # 1) matrix to rotate dofs in global coordinates
- J1 = _prod_vectorized(self.J0_to_J1, J)
- J2 = _prod_vectorized(self.J0_to_J2, J)
- DOF_rot = np.zeros([n, 9, 9], dtype=np.float64)
- DOF_rot[:, 0, 0] = 1
- DOF_rot[:, 3, 3] = 1
- DOF_rot[:, 6, 6] = 1
- DOF_rot[:, 1:3, 1:3] = J
- DOF_rot[:, 4:6, 4:6] = J1
- DOF_rot[:, 7:9, 7:9] = J2
- # 2) matrix to rotate Hessian in global coordinates.
- H_rot, area = self.get_Hrot_from_J(J, return_area=True)
- # 3) Computes stiffness matrix
- # Gauss quadrature.
- K = np.zeros([n, 9, 9], dtype=np.float64)
- weights = self.gauss_w
- pts = self.gauss_pts
- for igauss in range(self.n_gauss):
- alpha = np.tile(pts[igauss, :], n).reshape(n, 3)
- alpha = np.expand_dims(alpha, 2)
- weight = weights[igauss]
- d2Skdksi2 = self.get_d2Sidksij2(alpha, ecc)
- d2Skdx2 = _prod_vectorized(d2Skdksi2, H_rot)
- K += weight * _prod_vectorized(_prod_vectorized(d2Skdx2, self.E),
- _transpose_vectorized(d2Skdx2))
- # 4) With nodal (not elem) dofs
- K = _prod_vectorized(_prod_vectorized(_transpose_vectorized(DOF_rot),
- K), DOF_rot)
- # 5) Need the area to compute total element energy
- return _scalar_vectorized(area, K)
- def get_Hrot_from_J(self, J, return_area=False):
- """
- Parameters
- ----------
- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
- triangle first apex)
- Returns
- -------
- Returns H_rot used to rotate Hessian from local basis of first apex,
- to global coordinates.
- if *return_area* is True, returns also the triangle area (0.5*det(J))
- """
- # Here we try to deal with the simplest colinear cases; a null
- # energy and area is imposed.
- J_inv = _safe_inv22_vectorized(J)
- Ji00 = J_inv[:, 0, 0]
- Ji11 = J_inv[:, 1, 1]
- Ji10 = J_inv[:, 1, 0]
- Ji01 = J_inv[:, 0, 1]
- H_rot = _to_matrix_vectorized([
- [Ji00*Ji00, Ji10*Ji10, Ji00*Ji10],
- [Ji01*Ji01, Ji11*Ji11, Ji01*Ji11],
- [2*Ji00*Ji01, 2*Ji11*Ji10, Ji00*Ji11+Ji10*Ji01]])
- if not return_area:
- return H_rot
- else:
- area = 0.5 * (J[:, 0, 0]*J[:, 1, 1] - J[:, 0, 1]*J[:, 1, 0])
- return H_rot, area
- def get_Kff_and_Ff(self, J, ecc, triangles, Uc):
- """
- Builds K and F for the following elliptic formulation:
- minimization of curvature energy with value of function at node
- imposed and derivatives 'free'.
- Builds the global Kff matrix in cco format.
- Builds the full Ff vec Ff = - Kfc x Uc
- Parameters
- ----------
- *J* is a (N x 2 x 2) array of jacobian matrices (jacobian matrix at
- triangle first apex)
- *ecc* is a (N x 3 x 1) array (array of column-matrices) of triangle
- eccentricities
- *triangles* is a (N x 3) array of nodes indexes.
- *Uc* is (N x 3) array of imposed displacements at nodes
- Returns
- -------
- (Kff_rows, Kff_cols, Kff_vals) Kff matrix in coo format - Duplicate
- (row, col) entries must be summed.
- Ff: force vector - dim npts * 3
- """
- ntri = np.size(ecc, 0)
- vec_range = np.arange(ntri, dtype=np.int32)
- c_indices = np.full(ntri, -1, dtype=np.int32) # for unused dofs, -1
- f_dof = [1, 2, 4, 5, 7, 8]
- c_dof = [0, 3, 6]
- # vals, rows and cols indices in global dof numbering
- f_dof_indices = _to_matrix_vectorized([[
- c_indices, triangles[:, 0]*2, triangles[:, 0]*2+1,
- c_indices, triangles[:, 1]*2, triangles[:, 1]*2+1,
- c_indices, triangles[:, 2]*2, triangles[:, 2]*2+1]])
- expand_indices = np.ones([ntri, 9, 1], dtype=np.int32)
- f_row_indices = _prod_vectorized(_transpose_vectorized(f_dof_indices),
- _transpose_vectorized(expand_indices))
- f_col_indices = _prod_vectorized(expand_indices, f_dof_indices)
- K_elem = self.get_bending_matrices(J, ecc)
- # Extracting sub-matrices
- # Explanation & notations:
- # * Subscript f denotes 'free' degrees of freedom (i.e. dz/dx, dz/dx)
- # * Subscript c denotes 'condensated' (imposed) degrees of freedom
- # (i.e. z at all nodes)
- # * F = [Ff, Fc] is the force vector
- # * U = [Uf, Uc] is the imposed dof vector
- # [ Kff Kfc ]
- # * K = [ ] is the laplacian stiffness matrix
- # [ Kcf Kff ]
- # * As F = K x U one gets straightforwardly: Ff = - Kfc x Uc
- # Computing Kff stiffness matrix in sparse coo format
- Kff_vals = np.ravel(K_elem[np.ix_(vec_range, f_dof, f_dof)])
- Kff_rows = np.ravel(f_row_indices[np.ix_(vec_range, f_dof, f_dof)])
- Kff_cols = np.ravel(f_col_indices[np.ix_(vec_range, f_dof, f_dof)])
- # Computing Ff force vector in sparse coo format
- Kfc_elem = K_elem[np.ix_(vec_range, f_dof, c_dof)]
- Uc_elem = np.expand_dims(Uc, axis=2)
- Ff_elem = - _prod_vectorized(Kfc_elem, Uc_elem)[:, :, 0]
- Ff_indices = f_dof_indices[np.ix_(vec_range, [0], f_dof)][:, 0, :]
- # Extracting Ff force vector in dense format
- # We have to sum duplicate indices - using bincount
- Ff = np.bincount(np.ravel(Ff_indices), weights=np.ravel(Ff_elem))
- return Kff_rows, Kff_cols, Kff_vals, Ff
- # :class:_DOF_estimator, _DOF_estimator_user, _DOF_estimator_geom,
- # _DOF_estimator_min_E
- # Private classes used to compute the degree of freedom of each triangular
- # element for the TriCubicInterpolator.
- class _DOF_estimator:
- """
- Abstract base class for classes used to perform estimation of a function
- first derivatives, and deduce the dofs for a CubicTriInterpolator using a
- reduced HCT element formulation.
- Derived classes implement compute_df(self,**kwargs), returning
- np.vstack([dfx,dfy]).T where : dfx, dfy are the estimation of the 2
- gradient coordinates.
- """
- def __init__(self, interpolator, **kwargs):
- cbook._check_isinstance(
- CubicTriInterpolator, interpolator=interpolator)
- self._pts = interpolator._pts
- self._tris_pts = interpolator._tris_pts
- self.z = interpolator._z
- self._triangles = interpolator._triangles
- (self._unit_x, self._unit_y) = (interpolator._unit_x,
- interpolator._unit_y)
- self.dz = self.compute_dz(**kwargs)
- self.compute_dof_from_df()
- def compute_dz(self, **kwargs):
- raise NotImplementedError
- def compute_dof_from_df(self):
- """
- Computes reduced-HCT elements degrees of freedom, knowing the
- gradient.
- """
- J = CubicTriInterpolator._get_jacobian(self._tris_pts)
- tri_z = self.z[self._triangles]
- tri_dz = self.dz[self._triangles]
- tri_dof = self.get_dof_vec(tri_z, tri_dz, J)
- return tri_dof
- @staticmethod
- def get_dof_vec(tri_z, tri_dz, J):
- """
- Computes the dof vector of a triangle, knowing the value of f, df and
- of the local Jacobian at each node.
- *tri_z*: array of shape (3,) of f nodal values
- *tri_dz*: array of shape (3, 2) of df/dx, df/dy nodal values
- *J*: Jacobian matrix in local basis of apex 0
- Returns dof array of shape (9,) so that for each apex iapex:
- dof[iapex*3+0] = f(Ai)
- dof[iapex*3+1] = df(Ai).(AiAi+)
- dof[iapex*3+2] = df(Ai).(AiAi-)]
- """
- npt = tri_z.shape[0]
- dof = np.zeros([npt, 9], dtype=np.float64)
- J1 = _prod_vectorized(_ReducedHCT_Element.J0_to_J1, J)
- J2 = _prod_vectorized(_ReducedHCT_Element.J0_to_J2, J)
- col0 = _prod_vectorized(J, np.expand_dims(tri_dz[:, 0, :], axis=2))
- col1 = _prod_vectorized(J1, np.expand_dims(tri_dz[:, 1, :], axis=2))
- col2 = _prod_vectorized(J2, np.expand_dims(tri_dz[:, 2, :], axis=2))
- dfdksi = _to_matrix_vectorized([
- [col0[:, 0, 0], col1[:, 0, 0], col2[:, 0, 0]],
- [col0[:, 1, 0], col1[:, 1, 0], col2[:, 1, 0]]])
- dof[:, 0:7:3] = tri_z
- dof[:, 1:8:3] = dfdksi[:, 0]
- dof[:, 2:9:3] = dfdksi[:, 1]
- return dof
- class _DOF_estimator_user(_DOF_estimator):
- """dz is imposed by user; accounts for scaling if any."""
- def compute_dz(self, dz):
- (dzdx, dzdy) = dz
- dzdx = dzdx * self._unit_x
- dzdy = dzdy * self._unit_y
- return np.vstack([dzdx, dzdy]).T
- class _DOF_estimator_geom(_DOF_estimator):
- """Fast 'geometric' approximation, recommended for large arrays."""
- def compute_dz(self):
- """
- self.df is computed as weighted average of _triangles sharing a common
- node. On each triangle itri f is first assumed linear (= ~f), which
- allows to compute d~f[itri]
- Then the following approximation of df nodal values is then proposed:
- f[ipt] = SUM ( w[itri] x d~f[itri] , for itri sharing apex ipt)
- The weighted coeff. w[itri] are proportional to the angle of the
- triangle itri at apex ipt
- """
- el_geom_w = self.compute_geom_weights()
- el_geom_grad = self.compute_geom_grads()
- # Sum of weights coeffs
- w_node_sum = np.bincount(np.ravel(self._triangles),
- weights=np.ravel(el_geom_w))
- # Sum of weighted df = (dfx, dfy)
- dfx_el_w = np.empty_like(el_geom_w)
- dfy_el_w = np.empty_like(el_geom_w)
- for iapex in range(3):
- dfx_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 0]
- dfy_el_w[:, iapex] = el_geom_w[:, iapex]*el_geom_grad[:, 1]
- dfx_node_sum = np.bincount(np.ravel(self._triangles),
- weights=np.ravel(dfx_el_w))
- dfy_node_sum = np.bincount(np.ravel(self._triangles),
- weights=np.ravel(dfy_el_w))
- # Estimation of df
- dfx_estim = dfx_node_sum/w_node_sum
- dfy_estim = dfy_node_sum/w_node_sum
- return np.vstack([dfx_estim, dfy_estim]).T
- def compute_geom_weights(self):
- """
- Builds the (nelems x 3) weights coeffs of _triangles angles,
- renormalized so that np.sum(weights, axis=1) == np.ones(nelems)
- """
- weights = np.zeros([np.size(self._triangles, 0), 3])
- tris_pts = self._tris_pts
- for ipt in range(3):
- p0 = tris_pts[:, (ipt) % 3, :]
- p1 = tris_pts[:, (ipt+1) % 3, :]
- p2 = tris_pts[:, (ipt-1) % 3, :]
- alpha1 = np.arctan2(p1[:, 1]-p0[:, 1], p1[:, 0]-p0[:, 0])
- alpha2 = np.arctan2(p2[:, 1]-p0[:, 1], p2[:, 0]-p0[:, 0])
- # In the below formula we could take modulo 2. but
- # modulo 1. is safer regarding round-off errors (flat triangles).
- angle = np.abs(((alpha2-alpha1) / np.pi) % 1)
- # Weight proportional to angle up np.pi/2; null weight for
- # degenerated cases 0 and np.pi (note that *angle* is normalized
- # by np.pi).
- weights[:, ipt] = 0.5 - np.abs(angle-0.5)
- return weights
- def compute_geom_grads(self):
- """
- Compute the (global) gradient component of f assumed linear (~f).
- returns array df of shape (nelems, 2)
- df[ielem].dM[ielem] = dz[ielem] i.e. df = dz x dM = dM.T^-1 x dz
- """
- tris_pts = self._tris_pts
- tris_f = self.z[self._triangles]
- dM1 = tris_pts[:, 1, :] - tris_pts[:, 0, :]
- dM2 = tris_pts[:, 2, :] - tris_pts[:, 0, :]
- dM = np.dstack([dM1, dM2])
- # Here we try to deal with the simplest colinear cases: a null
- # gradient is assumed in this case.
- dM_inv = _safe_inv22_vectorized(dM)
- dZ1 = tris_f[:, 1] - tris_f[:, 0]
- dZ2 = tris_f[:, 2] - tris_f[:, 0]
- dZ = np.vstack([dZ1, dZ2]).T
- df = np.empty_like(dZ)
- # With np.einsum : could be ej,eji -> ej
- df[:, 0] = dZ[:, 0]*dM_inv[:, 0, 0] + dZ[:, 1]*dM_inv[:, 1, 0]
- df[:, 1] = dZ[:, 0]*dM_inv[:, 0, 1] + dZ[:, 1]*dM_inv[:, 1, 1]
- return df
- class _DOF_estimator_min_E(_DOF_estimator_geom):
- """
- The 'smoothest' approximation, df is computed through global minimization
- of the bending energy:
- E(f) = integral[(d2z/dx2 + d2z/dy2 + 2 d2z/dxdy)**2 dA]
- """
- def __init__(self, Interpolator):
- self._eccs = Interpolator._eccs
- _DOF_estimator_geom.__init__(self, Interpolator)
- def compute_dz(self):
- """
- Elliptic solver for bending energy minimization.
- Uses a dedicated 'toy' sparse Jacobi PCG solver.
- """
- # Initial guess for iterative PCG solver.
- dz_init = _DOF_estimator_geom.compute_dz(self)
- Uf0 = np.ravel(dz_init)
- reference_element = _ReducedHCT_Element()
- J = CubicTriInterpolator._get_jacobian(self._tris_pts)
- eccs = self._eccs
- triangles = self._triangles
- Uc = self.z[self._triangles]
- # Building stiffness matrix and force vector in coo format
- Kff_rows, Kff_cols, Kff_vals, Ff = reference_element.get_Kff_and_Ff(
- J, eccs, triangles, Uc)
- # Building sparse matrix and solving minimization problem
- # We could use scipy.sparse direct solver; however to avoid this
- # external dependency an implementation of a simple PCG solver with
- # a simple diagonal Jacobi preconditioner is implemented.
- tol = 1.e-10
- n_dof = Ff.shape[0]
- Kff_coo = _Sparse_Matrix_coo(Kff_vals, Kff_rows, Kff_cols,
- shape=(n_dof, n_dof))
- Kff_coo.compress_csc()
- Uf, err = _cg(A=Kff_coo, b=Ff, x0=Uf0, tol=tol)
- # If the PCG did not converge, we return the best guess between Uf0
- # and Uf.
- err0 = np.linalg.norm(Kff_coo.dot(Uf0) - Ff)
- if err0 < err:
- # Maybe a good occasion to raise a warning here ?
- cbook._warn_external("In TriCubicInterpolator initialization, "
- "PCG sparse solver did not converge after "
- "1000 iterations. `geom` approximation is "
- "used instead of `min_E`")
- Uf = Uf0
- # Building dz from Uf
- dz = np.empty([self._pts.shape[0], 2], dtype=np.float64)
- dz[:, 0] = Uf[::2]
- dz[:, 1] = Uf[1::2]
- return dz
- # The following private :class:_Sparse_Matrix_coo and :func:_cg provide
- # a PCG sparse solver for (symmetric) elliptic problems.
- class _Sparse_Matrix_coo:
- def __init__(self, vals, rows, cols, shape):
- """
- Creates a sparse matrix in coo format
- *vals*: arrays of values of non-null entries of the matrix
- *rows*: int arrays of rows of non-null entries of the matrix
- *cols*: int arrays of cols of non-null entries of the matrix
- *shape*: 2-tuple (n, m) of matrix shape
- """
- self.n, self.m = shape
- self.vals = np.asarray(vals, dtype=np.float64)
- self.rows = np.asarray(rows, dtype=np.int32)
- self.cols = np.asarray(cols, dtype=np.int32)
- def dot(self, V):
- """
- Dot product of self by a vector *V* in sparse-dense to dense format
- *V* dense vector of shape (self.m,)
- """
- assert V.shape == (self.m,)
- return np.bincount(self.rows,
- weights=self.vals*V[self.cols],
- minlength=self.m)
- def compress_csc(self):
- """
- Compress rows, cols, vals / summing duplicates. Sort for csc format.
- """
- _, unique, indices = np.unique(
- self.rows + self.n*self.cols,
- return_index=True, return_inverse=True)
- self.rows = self.rows[unique]
- self.cols = self.cols[unique]
- self.vals = np.bincount(indices, weights=self.vals)
- def compress_csr(self):
- """
- Compress rows, cols, vals / summing duplicates. Sort for csr format.
- """
- _, unique, indices = np.unique(
- self.m*self.rows + self.cols,
- return_index=True, return_inverse=True)
- self.rows = self.rows[unique]
- self.cols = self.cols[unique]
- self.vals = np.bincount(indices, weights=self.vals)
- def to_dense(self):
- """
- Returns a dense matrix representing self.
- Mainly for debugging purposes.
- """
- ret = np.zeros([self.n, self.m], dtype=np.float64)
- nvals = self.vals.size
- for i in range(nvals):
- ret[self.rows[i], self.cols[i]] += self.vals[i]
- return ret
- def __str__(self):
- return self.to_dense().__str__()
- @property
- def diag(self):
- """
- Returns the (dense) vector of the diagonal elements.
- """
- in_diag = (self.rows == self.cols)
- diag = np.zeros(min(self.n, self.n), dtype=np.float64) # default 0.
- diag[self.rows[in_diag]] = self.vals[in_diag]
- return diag
- def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
- """
- Use Preconditioned Conjugate Gradient iteration to solve A x = b
- A simple Jacobi (diagonal) preconditionner is used.
- Parameters
- ----------
- A : _Sparse_Matrix_coo
- *A* must have been compressed before by compress_csc or
- compress_csr method.
- b : array
- Right hand side of the linear system.
- Returns
- -------
- x : array
- The converged solution.
- err : float
- The absolute error np.linalg.norm(A.dot(x) - b)
- Other parameters
- ----------------
- x0 : array
- Starting guess for the solution.
- tol : float
- Tolerance to achieve. The algorithm terminates when the relative
- residual is below tol.
- maxiter : integer
- Maximum number of iterations. Iteration will stop
- after maxiter steps even if the specified tolerance has not
- been achieved.
- """
- n = b.size
- assert A.n == n
- assert A.m == n
- b_norm = np.linalg.norm(b)
- # Jacobi pre-conditioner
- kvec = A.diag
- # For diag elem < 1e-6 we keep 1e-6.
- kvec = np.maximum(kvec, 1e-6)
- # Initial guess
- if x0 is None:
- x = np.zeros(n)
- else:
- x = x0
- r = b - A.dot(x)
- w = r/kvec
- p = np.zeros(n)
- beta = 0.0
- rho = np.dot(r, w)
- k = 0
- # Following C. T. Kelley
- while (np.sqrt(abs(rho)) > tol*b_norm) and (k < maxiter):
- p = w + beta*p
- z = A.dot(p)
- alpha = rho/np.dot(p, z)
- r = r - alpha*z
- w = r/kvec
- rhoold = rho
- rho = np.dot(r, w)
- x = x + alpha*p
- beta = rho/rhoold
- #err = np.linalg.norm(A.dot(x) - b) # absolute accuracy - not used
- k += 1
- err = np.linalg.norm(A.dot(x) - b)
- return x, err
- # The following private functions:
- # :func:`_safe_inv22_vectorized`
- # :func:`_pseudo_inv22sym_vectorized`
- # :func:`_prod_vectorized`
- # :func:`_scalar_vectorized`
- # :func:`_transpose_vectorized`
- # :func:`_roll_vectorized`
- # :func:`_to_matrix_vectorized`
- # :func:`_extract_submatrices`
- # provide fast numpy implementation of some standard operations on arrays of
- # matrices - stored as (:, n_rows, n_cols)-shaped np.arrays.
- # Development note: Dealing with pathologic 'flat' triangles in the
- # CubicTriInterpolator code and impact on (2, 2)-matrix inversion functions
- # :func:`_safe_inv22_vectorized` and :func:`_pseudo_inv22sym_vectorized`.
- #
- # Goals:
- # 1) The CubicTriInterpolator should be able to handle flat or almost flat
- # triangles without raising an error,
- # 2) These degenerated triangles should have no impact on the automatic dof
- # calculation (associated with null weight for the _DOF_estimator_geom and
- # with null energy for the _DOF_estimator_min_E),
- # 3) Linear patch test should be passed exactly on degenerated meshes,
- # 4) Interpolation (with :meth:`_interpolate_single_key` or
- # :meth:`_interpolate_multi_key`) shall be correctly handled even *inside*
- # the pathologic triangles, to interact correctly with a TriRefiner class.
- #
- # Difficulties:
- # Flat triangles have rank-deficient *J* (so-called jacobian matrix) and
- # *metric* (the metric tensor = J x J.T). Computation of the local
- # tangent plane is also problematic.
- #
- # Implementation:
- # Most of the time, when computing the inverse of a rank-deficient matrix it
- # is safe to simply return the null matrix (which is the implementation in
- # :func:`_safe_inv22_vectorized`). This is because of point 2), itself
- # enforced by:
- # - null area hence null energy in :class:`_DOF_estimator_min_E`
- # - angles close or equal to 0 or np.pi hence null weight in
- # :class:`_DOF_estimator_geom`.
- # Note that the function angle -> weight is continuous and maximum for an
- # angle np.pi/2 (refer to :meth:`compute_geom_weights`)
- # The exception is the computation of barycentric coordinates, which is done
- # by inversion of the *metric* matrix. In this case, we need to compute a set
- # of valid coordinates (1 among numerous possibilities), to ensure point 4).
- # We benefit here from the symmetry of metric = J x J.T, which makes it easier
- # to compute a pseudo-inverse in :func:`_pseudo_inv22sym_vectorized`
- def _safe_inv22_vectorized(M):
- """
- Inversion of arrays of (2, 2) matrices, returns 0 for rank-deficient
- matrices.
- *M* : array of (2, 2) matrices to inverse, shape (n, 2, 2)
- """
- assert M.ndim == 3
- assert M.shape[-2:] == (2, 2)
- M_inv = np.empty_like(M)
- prod1 = M[:, 0, 0]*M[:, 1, 1]
- delta = prod1 - M[:, 0, 1]*M[:, 1, 0]
- # We set delta_inv to 0. in case of a rank deficient matrix; a
- # rank-deficient input matrix *M* will lead to a null matrix in output
- rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))
- if np.all(rank2):
- # Normal 'optimized' flow.
- delta_inv = 1./delta
- else:
- # 'Pathologic' flow.
- delta_inv = np.zeros(M.shape[0])
- delta_inv[rank2] = 1./delta[rank2]
- M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
- M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
- M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
- M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
- return M_inv
- def _pseudo_inv22sym_vectorized(M):
- """
- Inversion of arrays of (2, 2) SYMMETRIC matrices; returns the
- (Moore-Penrose) pseudo-inverse for rank-deficient matrices.
- In case M is of rank 1, we have M = trace(M) x P where P is the orthogonal
- projection on Im(M), and we return trace(M)^-1 x P == M / trace(M)**2
- In case M is of rank 0, we return the null matrix.
- *M* : array of (2, 2) matrices to inverse, shape (n, 2, 2)
- """
- assert M.ndim == 3
- assert M.shape[-2:] == (2, 2)
- M_inv = np.empty_like(M)
- prod1 = M[:, 0, 0]*M[:, 1, 1]
- delta = prod1 - M[:, 0, 1]*M[:, 1, 0]
- rank2 = (np.abs(delta) > 1e-8*np.abs(prod1))
- if np.all(rank2):
- # Normal 'optimized' flow.
- M_inv[:, 0, 0] = M[:, 1, 1] / delta
- M_inv[:, 0, 1] = -M[:, 0, 1] / delta
- M_inv[:, 1, 0] = -M[:, 1, 0] / delta
- M_inv[:, 1, 1] = M[:, 0, 0] / delta
- else:
- # 'Pathologic' flow.
- # Here we have to deal with 2 sub-cases
- # 1) First sub-case: matrices of rank 2:
- delta = delta[rank2]
- M_inv[rank2, 0, 0] = M[rank2, 1, 1] / delta
- M_inv[rank2, 0, 1] = -M[rank2, 0, 1] / delta
- M_inv[rank2, 1, 0] = -M[rank2, 1, 0] / delta
- M_inv[rank2, 1, 1] = M[rank2, 0, 0] / delta
- # 2) Second sub-case: rank-deficient matrices of rank 0 and 1:
- rank01 = ~rank2
- tr = M[rank01, 0, 0] + M[rank01, 1, 1]
- tr_zeros = (np.abs(tr) < 1.e-8)
- sq_tr_inv = (1.-tr_zeros) / (tr**2+tr_zeros)
- #sq_tr_inv = 1. / tr**2
- M_inv[rank01, 0, 0] = M[rank01, 0, 0] * sq_tr_inv
- M_inv[rank01, 0, 1] = M[rank01, 0, 1] * sq_tr_inv
- M_inv[rank01, 1, 0] = M[rank01, 1, 0] * sq_tr_inv
- M_inv[rank01, 1, 1] = M[rank01, 1, 1] * sq_tr_inv
- return M_inv
- def _prod_vectorized(M1, M2):
- """
- Matrix product between arrays of matrices, or a matrix and an array of
- matrices (*M1* and *M2*)
- """
- sh1 = M1.shape
- sh2 = M2.shape
- assert len(sh1) >= 2
- assert len(sh2) >= 2
- assert sh1[-1] == sh2[-2]
- ndim1 = len(sh1)
- t1_index = [*range(ndim1-2), ndim1-1, ndim1-2]
- return np.sum(np.transpose(M1, t1_index)[..., np.newaxis] *
- M2[..., np.newaxis, :], -3)
- def _scalar_vectorized(scalar, M):
- """
- Scalar product between scalars and matrices.
- """
- return scalar[:, np.newaxis, np.newaxis]*M
- def _transpose_vectorized(M):
- """
- Transposition of an array of matrices *M*.
- """
- return np.transpose(M, [0, 2, 1])
- def _roll_vectorized(M, roll_indices, axis):
- """
- Rolls an array of matrices along an axis according to an array of indices
- *roll_indices*
- *axis* can be either 0 (rolls rows) or 1 (rolls columns).
- """
- assert axis in [0, 1]
- ndim = M.ndim
- assert ndim == 3
- ndim_roll = roll_indices.ndim
- assert ndim_roll == 1
- sh = M.shape
- r, c = sh[-2:]
- assert sh[0] == roll_indices.shape[0]
- vec_indices = np.arange(sh[0], dtype=np.int32)
- # Builds the rolled matrix
- M_roll = np.empty_like(M)
- if axis == 0:
- for ir in range(r):
- for ic in range(c):
- M_roll[:, ir, ic] = M[vec_indices, (-roll_indices+ir) % r, ic]
- elif axis == 1:
- for ir in range(r):
- for ic in range(c):
- M_roll[:, ir, ic] = M[vec_indices, ir, (-roll_indices+ic) % c]
- return M_roll
- def _to_matrix_vectorized(M):
- """
- Builds an array of matrices from individuals np.arrays of identical
- shapes.
- *M*: ncols-list of nrows-lists of shape sh.
- Returns M_res np.array of shape (sh, nrow, ncols) so that:
- M_res[..., i, j] = M[i][j]
- """
- assert isinstance(M, (tuple, list))
- assert all(isinstance(item, (tuple, list)) for item in M)
- c_vec = np.asarray([len(item) for item in M])
- assert np.all(c_vec-c_vec[0] == 0)
- r = len(M)
- c = c_vec[0]
- M00 = np.asarray(M[0][0])
- dt = M00.dtype
- sh = [M00.shape[0], r, c]
- M_ret = np.empty(sh, dtype=dt)
- for irow in range(r):
- for icol in range(c):
- M_ret[:, irow, icol] = np.asarray(M[irow][icol])
- return M_ret
- def _extract_submatrices(M, block_indices, block_size, axis):
- """
- Extracts selected blocks of a matrices *M* depending on parameters
- *block_indices* and *block_size*.
- Returns the array of extracted matrices *Mres* so that:
- M_res[...,ir,:] = M[(block_indices*block_size+ir), :]
- """
- assert block_indices.ndim == 1
- assert axis in [0, 1]
- r, c = M.shape
- if axis == 0:
- sh = [block_indices.shape[0], block_size, c]
- elif axis == 1:
- sh = [block_indices.shape[0], r, block_size]
- dt = M.dtype
- M_res = np.empty(sh, dtype=dt)
- if axis == 0:
- for ir in range(block_size):
- M_res[:, ir, :] = M[(block_indices*block_size+ir), :]
- elif axis == 1:
- for ic in range(block_size):
- M_res[:, :, ic] = M[:, (block_indices*block_size+ic)]
- return M_res
|